The local hole: a galaxy underdensity covering 90 per cent of sky to ≈200 Mpc

Author:

Wong Jonathan H W12,Shanks T1ORCID,Metcalfe N1,Whitbourn J R1

Affiliation:

1. Centre for Extragalactic Astronomy, Department of Physics, Durham University , South Road, Durham DH1 3LE, UK

2. Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, University of Manchester , Oxford Road, Manchester M13 9PL, UK

Abstract

ABSTRACT We investigate the ‘Local Hole’, an anomalous underdensity in the local galaxy environment, by extending our previous galaxy K-band number-redshift and number-magnitude counts to ≈90 per cent of the sky. Our redshift samples are taken from the 2MASS Redshift Survey (2MRS) and the 2M++ catalogues, limited to K < 11.5. We find that both surveys are in good agreement, showing an $\approx 21\!-\!22{{\ \rm per\ cent}}$ underdensity at z < 0.075 when compared to our homogeneous counts model that assumes the same luminosity function (LF) and other parameters as in our earlier papers. Using the Two Micron All Sky Survey (2MASS) for n(K) galaxy counts, we measure an underdensity relative to this model of $20 \pm 2 {{\ \rm per\ cent}}$ at K < 11.5, which is consistent in both form and scale with the observed n(z) underdensity. To examine further the accuracy of the counts model, we compare its prediction for the fainter n(K) counts of the Galaxy and Mass Assembly (GAMA) survey. We further compare these data with a model assuming the parameters of a previous study where little evidence for the Local Hole was found. At 13 < K < 16, we find a significantly better fit for our galaxy counts model, arguing for our higher LF normalization. Although our implied underdensity of $\approx 20{{\ \rm per\ cent}}$ means local measurements of the Hubble Constant have been overestimated by ≈3 per cent, such a scale of underdensity is in tension with a global ΛCDM cosmology at an ≈3σ level.

Funder

STFC

National Science Foundation

European Space Agency

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3