Entropy-driven winds: Outflows and fountains lifted gently by buoyancy

Author:

Keller Benjamin W1ORCID,Kruijssen J M Diederik1ORCID,Wadsley James W2

Affiliation:

1. Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchofstraße 12-14, D-69120 Heidelberg, Germany

2. Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada

Abstract

ABSTRACT We present a new theoretical framework for using entropy to understand how outflows driven by supernovae are launched from disc galaxies: via continuous, buoyant acceleration through the circumgalactic medium (CGM). When young star clusters detonate supernovae in the interstellar medium (ISM) of a galaxy, they generate hot, diffuse bubbles that push on the surrounding ISM and evaporate that ISM into their interiors. As these bubbles reach the scale height of the ISM, they break out of the disc, rising into the CGM. Once these bubbles break out, if they have sufficiently high entropy, they will feel an upward acceleration, owing to a local buoyant force. This upward force will accelerate these bubbles, driving them to high galactocentric radii, keeping them in the CGM for > Gyr, even if their initial velocity is much lower than the local escape velocity. We derive an equation of motion for these entropy-driven winds that connects the ISM properties, halo mass, and CGM profile of galaxies to the ultimate evolution of feedback-driven winds. We explore the parameter space of these equations, and show how this novel framework can explain both self-consistent simulations of star formation and galactic outflows as well as the new wealth of observations of CGM kinematics. We show that these entropy-driven winds can produce long wind recycling times, while still carrying a significant amount of mass. Comparisons to simulations and observations show entropy-driven winds convincingly explain the kinematics of galactic outflows.

Funder

Natural Sciences and Engineering Research Council of Canada

European Research Council

Alexander von Humboldt-Stiftung

German Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3