Implications of surface roughness in models of water desorption on the Moon

Author:

Davidsson Björn J R1ORCID,Hosseini Sona1

Affiliation:

1. Jet Propulsion Laboratory, California Institute of Technology, M/S 183–401, 4800 Oak Grove Drive, Pasadena, CA 91109, USA

Abstract

ABSTRACT The observed presence of water molecules in the dayside lunar regolith was an unexpected discovery and remains poorly understood. Standard thermophysical models predict temperatures that are too high for adsorbed water to be stable. We propose that this problem can be caused by the assumption of locally flat surfaces that is common in such models. Here, we apply a model that explicitly considers surface roughness, and accounts for solar illumination, shadows cast by topography, self-heating, thermal reradiation, and heat conduction. We couple the thermophysical model to a model of first-order desorption of lunar surface water and demonstrate that surface roughness substantially increases the capability of the Moon to retain water on its sunlit hemisphere at any latitude, and within 45○ of the poles, at any time of the lunar day. Hence, we show that lunar surface roughness has a strong influence on lunar water adsorption and desorption. Therefore, it is of critical importance to take account of surface roughness to get an accurate picture of the amount of water on the Moon’s surface and in its exosphere.

Funder

Jet Propulsion Laboratory

California Institute of Technology

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3