Polycyclic aromatic hydrocarbon molecules and the 2175Å interstellar extinction bump

Author:

Lin Qi12,Yang X J12ORCID,Li Aigen2

Affiliation:

1. Hunan Key Laboratory for Stellar and Interstellar Physics and School of Physics and Optoelectronics, Xiangtan University , Hunan 411105 , China

2. Department of Physics and Astronomy, University of Missouri , Columbia, MO 65211 , USA

Abstract

ABSTRACT The exact nature of the 2175$\mathring{\rm A}$ extinction bump, the strongest spectroscopic absorption feature superimposed on the interstellar extinction curve, remains unknown ever since its discovery in 1965. Popular candidate carriers for the extinction bump include nano-sized graphitic grains and polycyclic aromatic hydrocarbon (PAH) molecules. To quantitatively evaluate PAHs as a possible carrier, we perform quantum chemical computations for the electronic transitions of 30 compact, pericondensed PAH molecules and their cations as well as anions with a wide range of sizes from 16 to 96 C atoms, and a mean size of 43 C atoms. It is found that a mixture of such PAHs, which individually exhibit sharp absorption features, show a smooth and broad absorption band that resembles the 2175$\mathring{\rm A}$ interstellar extinction bump. Arising from π* ← π transitions, the width and intensity of the absorption bump for otherwise randomly selected and uniformly weighted PAH mixtures, do not vary much with PAH sizes and charge states, whereas the position somewhat shifts to longer wavelengths as PAH size increases. While the computed bump position, with the computational uncertainty taken into account, appears to agree with that of the interstellar extinction bump, the computed width is considerably broader than the interstellar bump if the molecules are uniformly weighted. It appears that, to account for the observed bump width, one has to resort to PAH species of specific sizes and structures.

Funder

NSFC

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3