The separate effect of halo mass and stellar mass on the evolution of massive disc galaxies

Author:

Zhou Shuang12ORCID,Aragón-Salamanca Alfonso1ORCID,Merrifield Michael1ORCID

Affiliation:

1. School of Physics and Astronomy, University of Nottingham , University Park, Nottingham NG7 2RD , UK

2. INAF – Osservatorio Astronomico di Brera , Via Brera 28, I-20121 Milano , Italy

Abstract

ABSTRACT We analyse a sample of massive disc galaxies selected from the fourth-generation Sloan Digital Sky Survey/Mapping Nearby Galaxies at Apache Point Observatory survey to investigate how the evolution of these galaxies depends on their stellar and halo masses. We applied a semi-analytic spectral fitting approach to the data from different regions in the galaxies to derive several of their key physical properties. From the best-fitting model results, together with direct observables such as morphology, colour, and the Mgb/〈Fe〉 index ratio measured within 1Re, we find that for central galaxies both their stellar and halo masses have a significant influence in their evolution. For a given halo mass, galaxies with higher stellar mass accumulate their stellar mass and become chemically enriched earlier than those with smaller stellar mass. Furthermore, at a given stellar mass, galaxies living in more massive haloes have longer star formation time-scales and are delayed in becoming chemically enriched. In contrast, the evolution of massive satellite galaxies is mostly determined by their stellar mass. The results indicate that both the assembled halo mass and the halo assembly history impact the evolution of central galaxies. Our spatially resolved analysis indicates that only the galaxy properties in the central region (0.0–0.5Re) show the dependencies described above. This fact supports a halo-driven formation scenario since the galaxies’ central regions are more likely to contain old stars formed along with the halo itself, keeping a memory of the halo formation process.

Funder

Science and Technology Facilities Council

U.S. Department of Energy Office of Science

University of Utah

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3