Evaluation of fractional clear sky over potential astronomical sites

Author:

Ningombam Shantikumar S1,Song H-J2,Mugil S K3,Dumka Umesh Chandra4ORCID,Larson E J L56,Kumar Brijesh4,Sagar Ram1

Affiliation:

1. Indian Institute of Astrophysics, Bangalore 560034, India

2. National Institute of Meteorological Sciences, Seogwipo, Jeju 63568, South Korea

3. Physics Department, St Joseph’s College (Autonomous), Bangalore 560027, India

4. Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital 263 001, India

5. CIRES, University of Colorado, Boulder, CO 80309, USA

6. Chemical Sciences Laboratory, NOAA, Boulder, CO 80305, USA

Abstract

ABSTRACT The estimation of the night-time cloud fraction (CF) is found to be one of the key parameters for evaluating the number of useful nights at an astronomical site. This work evaluates useful astronomical night-time observation over eight sites using a minimum threshold of CF from 21 years (2000–2020) of ground-based hourly visual and daily satellite data along with 41 years (1980–2020) of long-term hourly reanalysis data. The estimated number of photometric nights is underestimated by 8–24 per cent using the reanalysis data at Indian Astronomical Observatory-Hanle in comparison with the visual observations, while the estimated number of spectroscopic nights is 70–75 per cent per year and in good agreement with the visual observations. Among the astronomical sites, Paranal is found to be the best for astronomical observations, with 87 per cent spectroscopic nights per year. On the other hand, Hanle, Ali and Devasthal, located in the Himalayan region, exhibit an average of 68–78 per cent spectroscopic nights per year based on long-term reanalysis data, while Merak exhibits 61–68 per cent spectroscopic nights per year. Vertical profiles and global horizontal distributions for CF and related variable parameters are further compared among the sites. Global CF trends based on 41 years of reanalysis data show a decreasing tendency over most land regions and an increasing tendency over oceanic regions as well as over the Sahara desert, Middle East, and Indian subcontinent along the adjacent Tibetan Plateau. Such different CF trends between the ocean and land regions are thought to be the result of differential surface warming and water vapour changes associated with climate change.

Funder

National Academy of Sciences

Alexander von Humboldt Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3