Constraining primordial non-Gaussianity using neural networks

Author:

Nagarajappa Chandan G1ORCID,Ma Yin-Zhe231ORCID

Affiliation:

1. Astrophysics and Cosmology Research Unit, School of Chemistry and Physics, University of KwaZulu-Natal , Westville Campus, Private Bag X54001, Durban 4000 , South Africa

2. Department of Physics, Stellenbosch University , Matieland 7602 , South Africa

3. National Institute for Theoretical and Computational Sciences (NITheCS) , South Africa

Abstract

ABSTRACT We present a novel approach to estimate the value of primordial non-Gaussianity (fNL) parameter directly from the cosmic microwave background (CMB) maps using a convolutional neural network (CNN). While traditional methods rely on complex statistical techniques, this study proposes a simpler approach that employs a neural network to estimate fNL. The neural network model is trained on simulated CMB maps with known fNL in range of [−50, 50], and its performance is evaluated using various metrics. The results indicate that the proposed approach can accurately estimate fNL values from CMB maps with a significant reduction in complexity compared to traditional methods. With 500 validation data, the $f^{\rm output}_{\rm NL}$ against $f^{\rm input}_{\rm NL}$ graph can be fitted as y = ax + b, where $a=0.980^{+0.098}_{-0.102}$ and $b=0.277^{+0.098}_{-0.101}$, indicating the unbiasedness of the primordial non-Gaussianity estimation. The results suggest that the CNN technique can be widely applied to other cosmological parameter estimation directly from CMB images.

Funder

National Research Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3