Cosmic ray-driven magnetohydrodynamic waves in magnetized self-gravitating dusty molecular clouds

Author:

Boro Pallab1ORCID,Prajapati Ram Prasad1ORCID

Affiliation:

1. School of Physical Sciences, Jawaharlal Nehru University , New Delhi 110067, India

Abstract

ABSTRACT The impact of galactic cosmic rays (CRs) in terms of CR pressure and parallel CR diffusion has been investigated on the low-frequency magnetohydrodynamic (MHD) waves and linear gravitational instability in the typical dusty plasma environment of molecular clouds (MCs). The dusty fluid model is formulated by combining the equations of the magnetized electrons/ions and dust particles, including the CR effects. The interactions between CR fluid and gravitating magnetized dusty plasma have been studied with the help of modified dispersion properties of the MHD waves and instabilities using the hydrodynamic fluid–fluid (CR–plasma) approach. CR diffusion affects the coupling of CR pressure-driven mode with dust-Alfvén MHD mode and causes damping in the MHD waves. It persists in its effect along the direction of the magnetic field and is diminished across the magnetic field. The phase-speed diagram shows that for super-Alfvénic wave, the slow mode becomes the intermediate Alfvén mode. The fundamental Jeans instability criterion remains unaffected due to CR effects, but in the absence of CR diffusion, the effects of dust-acoustic speed and CR pressure-driven wave speed are observed in the instability criterion. It is found that CR pressure stabilizes while CR diffusion destabilizes the growth rates of Jeans instability and significantly affects the gravitational collapse of dusty MCs. The charged dust grains play a dominant role in the sub-Alfvénic and super-Alfvénic MHD waves and the collapse of MCs, triggering gravitational instability. The consequences have been discussed to understand the gravitational instability in the dense photodissociation regions of dusty MCs.

Funder

Science and Engineering Research Board

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3