Signatures of wakefield acceleration in astrophysical jets via gamma-rays and UHECRs

Author:

Huxtable Gregory B1,Eltawil Noor1,Feng Wei-Xiang2,Player Gabriel1,Wang Wenhao1,Tajima Toshiki1,Ebisuzaki Toshikazu3

Affiliation:

1. Physics and Astronomy, UC Irvine , 4129 Frederick Reines Hall, Irvine, CA 92697, USA

2. Physics and Astronomy, UC Riverside , 900 University Ave., Riverside, CA 92521, USA

3. Computational Astrophysics Laboratory, RIKEN , 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

Abstract

ABSTRACT We present six case studies from a comprehensive mass range (1–109 M⊙) of astrophysical objects, each of which possess jets, emit high-energy gamma radiation and in some instances spatially identifiable ultra-high-energy cosmic rays (UHECRs). All sources are strong candidates for UHECR emission, if not already known to emit them. We surmise that wakefield acceleration in conjunction with the magnetorotational instability of the accretion disc explains both structural properties of the jets and details in their emission signals, such as correlations in neutrino and gamma-ray bursts, and in the case of blazars, anticorrelations in flux and spectral index. Furthermore, our model predicts an upper bound for the energy of UHECRs emitted from a source given the mass of its central compact object and total jet luminosity. To provide context for our model predictions, we quantitatively compare them with observational data, however, we have not accounted for the GZK limit and assumed universal values for several model parameters (e.g. jet-spreading index, p) that likely differ between sources. Since the accretion and acceleration mechanisms are independent of mass, aside from determining maximum values, blazars (∼109 M⊙), radio galaxies ($\sim 10^8\, {\rm M}_{\odot }$ ), Seyfert galaxies ($\sim 10^6 \, {\rm M}_{\odot }$ ), starburst galaxies ($\sim 10^{3}\, {\rm M}_{\odot }$ ), even microquasars (1–10 M⊙) interestingly exhibit the same physics. Other radiation bands, such as X-ray, ultraviolet, or radio, may harbour additional information, but we chose not to focus on them for brevity. However, such an endeavour may open the door to a new multimessenger approach for understanding these objects.

Funder

American Physical Society

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3