A new estimator of resolved molecular gas in nearby galaxies

Author:

Chown Ryan1ORCID,Li Cheng2,Parker Laura1,Wilson Christine D1,Li Niu2,Gao Yang3

Affiliation:

1. Department of Physics & Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada

2. Department of Astronomy, Tsinghua University, Beijing 100084, China

3. Purple Mountain Observatory & Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, Nanjing 210034, China

Abstract

ABSTRACT A relationship between dust-reprocessed light from recent star formation and the amount of star-forming gas in a galaxy produces a correlation between Wide-field Infrared Survey Explorer (WISE) 12 μm emission and CO line emission. Here, we explore this correlation on kiloparsec scales with CO(1–0) maps from EDGE–CALIFA matched in resolution to WISE 12 μm images. We find strong CO-12 μm correlations within each galaxy and we show that the scatter in the global CO-12 μm correlation is largely driven by differences from galaxy to galaxy. The correlation is stronger than that between star formation rate and H2 surface densities [Σ(H2)]. We explore multivariable regression to predict Σ(H2) in star-forming pixels using the WISE 12 μm data combined with global and resolved galaxy properties, and provide the fit parameters for the best estimators. We find that Σ(H2) estimators that include $\Sigma (\mathrm{12\:\mu m})$ are able to predict Σ(H2) more accurately than estimators that include resolved optical properties instead of $\Sigma (\mathrm{12\:\mu m})$. These results suggest that 12 μm emission and H2 as traced by CO emission are physically connected at kiloparsec scales. This may be due to a connection between polycyclic aromatic hydrocarbon emission and the presence of H2. The best single-property estimator is $\log \frac{\Sigma (\mathrm{H_2})}{\mathrm{M_\odot \:pc^{-2}}} = (0.48 \pm 0.01) + (0.71 \pm 0.01)\log \frac{\Sigma (\mathrm{12\:\mu m})}{\mathrm{L_\odot \:pc^{-2}}}$. This correlation can be used to efficiently estimate Σ(H2) down to at least 1 M⊙ pc−2 in star-forming regions within nearby galaxies.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Canada Research Chairs

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3