Missing metals in DQ stars: a compelling clue to their origin

Author:

Farihi J1ORCID,Dufour P2,Wilson T G134ORCID

Affiliation:

1. Department of Physics and Astronomy, University College London , London WC1E 6BT , UK

2. Département de Physique, Université de Montréal , Montréal, Québec H3C 3J7 , Canada

3. Isaac Newton Group of Telescopes , E-38700 Santa Cruz de La Palma , Spain

4. School of Physics and Astronomy, University of St. Andrews , St. Andrews KY16 9SS , UK

Abstract

ABSTRACT White dwarf stars frequently experience external pollution by heavy elements, and yet the intrinsically carbon-enriched DQ spectral class members fail to exhibit this phenomenon, representing a decades-old conundrum. This study reports a high-resolution spectroscopic search for Ca ii in classical DQ white dwarfs, finding that these stars are stunted both in pollution frequency and heavy element mass fractions, relative to the wider population. Compared to other white dwarf spectral classes, the average external accretion rate is found to be at least three orders of magnitude lower in the DQ stars. Several hypotheses are considered which need to simultaneously account for (i) an apparent lack of accreted metals, (ii) a dearth of circumstellar planetary material, (iii) an observed deficit of unevolved companions in post-common envelope binaries, (iv) relatively low helium mass fractions, and remnant masses that appear smaller than for other spectral classes, (v) a high incidence of strong magnetism, and (vi) modestly older disc kinematics. Only one hypothesis is consistent with all these constraints, suggesting DQ white dwarfs are the progeny of binary evolution that altered both their stellar structures and their circumstellar environments. A binary origin is already suspected for the warmer and more massive DQ stars, and is proposed here as an inclusive mechanism to expose core carbon material, in a potential evolutionary unification for the entire DQ spectral class. In this picture, DQ stars are not descended from DA or DB white dwarfs that commonly host dynamically active planetary systems.

Funder

STFC

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3