The case of HD 106906 debris disc: a binary’s revenge

Author:

Farhat Mohammad A1ORCID,Sefilian Antranik A234ORCID,Touma Jihad R53

Affiliation:

1. IMCCE, CNRS, Observatoire de Paris,, PSL University, Sorbonne Université , 77 Avenue Denfert-Rochereau, 75014, Paris , France

2. Astrophysikalisches Institut und Universitätssternwarte, Friedrich-Schiller-Universität Jena , Schillergäßchen 2–3, 07745 Jena , Germany

3. Center for Advanced Mathematical Sciences, American University of Beirut , PO Box 11-0236, Riad El-Solh, Beirut 11097 2020 , Lebanon

4. Departamento de Física, Universidad Técnica Federico Santa María , Avenida España 1680, Valparaíso , Chile

5. Department of Physics, American University of Beirut , PO Box 11-0236, Riad El-Solh, Beirut 11097 2020 , Lebanon

Abstract

ABSTRACTDebris disc architecture presents [exo-]planetary scientists with precious clues for processes of planet formation and evolution, including constraints on planetary mass perturbers. This is particularly true of the disc in HD 106906, which in early HST, then follow up polarimetric observations, presented asymmetries and needle-like features that have been attributed to perturbations by a massive, and unusually distant external planetary companion. Here, we revisit the long-term secular dynamical evolution of the HD 106906 disc allowing for the combined gravitational action of the planetary companion and the inner stellar binary which holds the system together. We argue that the binary is strong enough to impose a dynamical break at the disc’s location, resulting in distinctive observational signatures which we render via simulated surface density maps and vertical structure profiles. Within uncertainties on the planet’s orbit, we show that the disc can go from being fully dominated by the inner binary to significantly so, and is hardly ever outside its reach. The extent of binary dominance impacts the disc’s mean eccentricity, a metric which we map as a function of the planet’s semimajor axis and orbital eccentricity, with and without radiation pressure. We can thus constrain the planet’s orbit to ease the tension between evident axisymmetry in the millimeter, and apparent asymmetry in scattered light. We discuss phase space structure, then inclination distribution, arguing for the relevance of our results to a variety of hierarchical systems, as we set the stage for generalizations that allow for disc self-gravity and collisional evolution.

Funder

Alexander von Humboldt Foundation

ESO

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3