A line-binned treatment of opacities for the spectra and light curves from neutron star mergers

Author:

Fontes C J1ORCID,Fryer C L123,Hungerford A L1,Wollaeger R T1,Korobkin O1ORCID

Affiliation:

1. Los Alamos National Laboratory, Los Alamos, NM 87545, USA

2. Physics Department, University of Arizona, Tucson, AZ 85721, USA

3. Physics and Astronomy Department, University of New Mexico, Albuquerque, NM 87131, USA

Abstract

ABSTRACT The electromagnetic observations of GW170817 were able to dramatically increase our understanding of neutron star mergers beyond what we learned from gravitational waves alone. These observations provided insight on all aspects of the merger from the nature of the gamma-ray burst to the characteristics of the ejected material. The ejecta of neutron star mergers are expected to produce such electromagnetic transients, called kilonovae or macronovae. Characteristics of the ejecta include large velocity gradients, relative to supernovae, and the presence of heavy r-process elements, which pose significant challenges to the accurate calculation of radiative opacities and radiation transport. For example, these opacities include a dense forest of bound–bound features arising from near-neutral lanthanide and actinide elements. Here we investigate the use of fine-structure, line-binned opacities that preserve the integral of the opacity over frequency. Advantages of this area-preserving approach over the traditional expansion–opacity formalism include the ability to pre-calculate opacity tables that are independent of the type of hydrodynamic expansion and thus eliminate the computational expense of calculating opacities within radiation-transport simulations. Tabular opacities are generated for all 14 lanthanides as well as a representative actinide element, uranium. We demonstrate that spectral simulations produced with the line-binned opacities agree well with results produced with the more accurate continuous Monte Carlo Sobolev approach, as well as with the commonly used expansion–opacity formalism. The agreement between the line-binned and expansion–opacity results is explained as arising from the similarity in their opacities in the limit of low optical depth, where radiation transport is important in the ejecta. Additional investigations illustrate the convergence of opacity with respect to the number of included lines, and elucidate sensitivities to different atomic physics approximations, such as fully and semirelativistic approaches.

Funder

U.S. Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3