Nuclear star clusters as probes of dark matter haloes: the case of the Sagittarius dwarf spheroidal galaxy

Author:

Herlan Robin1,Mastrobuono-Battisti Alessandra123ORCID,Neumayer Nadine1

Affiliation:

1. Max Planck Institut für Astronomie , Königstuhl 17, D-69117 Heidelberg, Germany

2. GEPI, Observatoire de Paris, PSL Research University, CNRS , Place Jules Janssen, F-92190 Meudon, France

3. Department of Astronomy and Theoretical Physics, Lund Observatory , Box 43, SE-221 00 Lund, Sweden

Abstract

ABSTRACT The Sagittarius dwarf spheroidal (Sgr dSph) galaxy is currently being accreted and disrupted by the tidal field of the Milky Way. Recent observations have shown that the central region of the dwarf hosts at least three different stellar populations, ranging from old and metal-poor over intermediate metal-rich to young metal-rich. While the intermediate-age metal-rich population has been identified as part of the galaxy, the oldest and youngest populations belong to M54, the nuclear star cluster (NSC) of the Sgr dSph galaxy. The old metal-poor component of M54 has been interpreted as at least one decayed globular cluster (GC) that was initially orbiting its host galaxy. The youngest population formed in situ from gas accreted into M54 after its arrival at the centre of the host. In this work, we use the observed properties of M54 to explore the shape of the inner density profile of the Sgr dSph galaxy. To do so, we simulate the decay of M54 towards the centre of the dark matter (DM) halo of its host. We model the DM density profile using different central slopes, and we compare the results of the simulations to the most recent observations of the structural properties of M54. From this comparison, we conclude that a GC that decays in a DM halo with a density profile ∝ r−γ and γ ≤ 1 shows a rotational signal and flattening comparable to those observed for M54. Steeper profiles produce, instead, highly rotating and more flattened NSCs which do not match the properties of M54.

Funder

German Research Foundation

DAAD

European Union

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Offset of M54 from the Sagittarius dwarf spheroidal galaxy;Monthly Notices of the Royal Astronomical Society;2024-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3