astrophot: fitting everything everywhere all at once in astronomical images

Author:

Stone Connor J123ORCID,Courteau Stéphane4,Cuillandre Jean-Charles5ORCID,Hezaveh Yashar1236ORCID,Perreault-Levasseur Laurence1236ORCID,Arora Nikhil78ORCID

Affiliation:

1. Department of Physics, Université de Montréal , Montréal, Québec, H3T 1J4 , Canada

2. Mila – Québec Artificial Intelligence Institute , Montréal, Québec, H2S 3H1 , Canada

3. Ciela – Montréal Institute for Astrophysical Data Analysis and Machine Learning , Montréal, Québec, H2V 0B3 , Canada

4. Department of Physics, Engineering Physics & Astronomy, Queen’s University , Kingston, Ontario, K7L 3N6 , Canada

5. AIM, CEA, CNRS, Université Paris-Saclay, Université de Paris , F-91191 Gif-sur-Yvette , France

6. Center for Computational Astrophysics, Flatiron Institute , 162 5th Avenue, New York, NY 10010 , USA

7. New York University Abu Dhabi , PO Box 129188, Abu Dhabi , United Arab Emirates

8. Center for Astro, Particle and Planetary Physics (CAP3), New York University Abu Dhabi , Abu Dhabi , United Arab Emirates

Abstract

ABSTRACT We present astrophot, a fast, powerful, and user-friendly python based astronomical image photometry solver. astrophot incorporates automatic differentiation and graphics processing unit (GPU), or parallel central processing unit (CPU), acceleration, powered by the machine learning library pytorch. Everything: astrophot can fit models for sky, stars, galaxies, point spread functions (PSFs), and more in a principled χ2 forward optimization, recovering Bayesian posterior information and covariance of all parameters. Everywhere: astrophot can optimize forward models on CPU or GPU; across images that are large, multiband, multi-epoch, rotated, dithered, and more. All at once: The models are optimized together, thus handling overlapping objects and including the covariance between parameters (including PSF and galaxy parameters). A number of optimization algorithms are available including Levenberg–Marquardt, Gradient descent, and No-U-Turn Markov chain Monte Carlo sampling. With an object-oriented user interface, astrophot makes it easy to quickly extract detailed information from complex astronomical data for individual images or large survey programs. This paper outlines novel features of the astrophot code and compares it to other popular astronomical image modelling software. astrophot is open-source, fully python based, and freely accessible at https://github.com/Autostronomy/AstroPhot .

Funder

Natural Sciences and Engineering Research Council of Canada

Canadian Institute for Theoretical Astrophysics

Fonds de recherche du Québec

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Nearly Universal Disk Galaxy Rotation Curve;The Astrophysical Journal;2024-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3