Properties of gamma-ray bursts associated with supernovae and kilonovae

Author:

Li Q M1,Zhang Z B1,Han X L2,Zhang K J1,Xia X L1,Hao C T1

Affiliation:

1. Department of Physics, College of Physics, Guizhou University , Guiyang 550025 , P. R. China

2. Department of Physics and Astronomy, Butler University , Indianapolis, IN 46208 , USA

Abstract

ABSTRACT We systematically compare the temporal and spectral properties of 53 supernova (SN)-associated and 15 kilonova (KN)-associated gamma-ray bursts (GRBs). We find that the spectral parameters of both types of GRBs are identically and lognormally distributed, consistent with those normal GRBs. The bolometric luminosities of SN/GRBs and KN/GRBs have a triple form, with the corresponding break luminosities of SN/GRBs are roughly two orders of magnitude larger than those of KN/GRBs. We build the power-law relations between the spectral lag and the luminosity of prompt γ-rays with indices of −1.43 ± 0.33 for SN/GRBs and −2.17 ± 0.57 for KN/GRBs in the laboratory frame, which are respectively coincident with the rest-frame values. We verify that both SN/GRBs and KN/GRBs comply with their own Amati relations that match those of long and short GRBs, respectively. Analysing X-ray afterglows with good plateau segments, we build the power-law relations between the X-ray luminosity and the plateau time with an index of −1.12 ± 0.17 for KN/GRBs and −1.08 ± 0.22 for SN/GRBs, which can be well explained by the relativistic shock driven by an energy injection. The plots of luminosity-lag, Amati relation, and luminosity-time show heavy overlap between the two types of GRBs, implying that they might share the same radiation mechanism despite originating from different progenitors or central engines.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3