Affiliation:
1. School of Physics and Astronomy, Cardiff University, Queen’s Buildings, The Parade, Cardiff CF24 3AA, UK
2. Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
3. Sterrenkundig Observatorium, Ghent University, Krijgslaan 281 – S9, B-9000 Gent, Belgium
Abstract
ABSTRACT
We calculate dust spectral energy distributions (SEDs) for a range of grain sizes and compositions, using physical properties appropriate for five pulsar wind nebulae (PWNe) from which dust emission associated with the ejecta has been detected. By fitting the observed dust SED with our models, with the number of grains of different sizes as the free parameters, we are able to determine the grain size distribution and total dust mass in each PWN. We find that all five PWNe require large ($\ge 0.1 \, {\rm \mu m}$) grains to make up the majority of the dust mass, with strong evidence for the presence of micron-sized or larger grains. Only two PWNe contain non-negligible quantities of small ($\lt 0.01 \, {\rm \mu m}$) grains. The size distributions are generally well-represented by broken power laws, although our uncertainties are too large to rule out alternative shapes. We find a total dust mass of $0.02\rm {-}0.28 \, {\rm M}_\odot$ for the Crab Nebula, depending on the composition and distance from the synchrotron source, in agreement with recent estimates. For three objects in our sample, the PWN synchrotron luminosity is insufficient to power the observed dust emission, and additional collisional heating is required, either from warm, dense gas as found in the Crab Nebula, or higher temperature shocked material. For G54.1+0.3, the dust is heated by nearby OB stars rather than the PWN. Inferred dust masses vary significantly depending on the details of the assumed heating mechanism, but in all cases large mass fractions of micron-sized grains are required.
Funder
Science and Technology Facilities Council
European Research Council
Fonds Wetenschappelijk Onderzoek
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献