Long-term variation of coronal holes latitudinal distribution

Author:

Maghradze D A12,Chargeishvili B B1,Japaridze D R12,Oghrapishvili N B1,Chargeishvili K B1

Affiliation:

1. Evgeni Kharadze Georgian National Astrophysical Observatory , Mt. Kanobili, Abastumani 0301, Georgia

2. Centre for Computational Helio Studies, Ilia State University , Cholokashvili Ave. 3/5, Tbilisi 0162, Georgia

Abstract

ABSTRACT We study the evolution of the latitudinal distribution of coronal holes using the Solar and Heliospheric Observatory (SOHO)/Extreme ultraviolet Imaging Telescope (EIT) 195 Å data from 1996 May to 2020 April. To measure the presence of coronal holes at a given latitude, we use the presence factor, which estimates the length of an object along a given parallel, expressed as a percentage of half of the equator length. By semi-automatic processing of the data series, we obtained the 361 × 7346 latitude–time matrix. The corresponding diagram shows the significant difference in evolutionary shapes of a latitudinal distribution of non-polar and polar coronal holes. However, the morphology of the evolutionary picture and the migration route of the geometric centre of activity of the coronal hole in the diagram indicate that non-polar and polar coronal holes have the same driving mechanism. It is believed that the migration of the centre of activity of the coronal hole in the latitude–time diagram is a combination of two opposite migration paths. They intersect at the equator and diverge to opposite poles, where they form the so-called polar coronal holes, then again move to lower latitudes, and this happens cyclically. Determining the opposite migration paths by antiphase sinusoids, their deviation from antiphase determines the detected north–south asymmetry in the activity of the coronal hole.

Funder

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Sun and Space Weather;Atmosphere;2022-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3