Magnetothermal evolution in the cores of adolescent neutron stars: The Grad–Shafranov equilibrium is never reached in the ‘strong-coupling’ regime

Author:

Moraga Nicolás A1ORCID,Castillo Francisco2ORCID,Reisenegger Andreas2ORCID,Valdivia Juan A1ORCID,Gusakov Mikhail E3ORCID

Affiliation:

1. Departamento de Física, Facultad de Ciencias, Universidad de Chile , Casilla 653, 7800024 Santiago , Chile

2. Departamento de Física, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación , Av. José Pedro Alessandri 774, Nuñoa, 7760197 Santiago , Chile

3. Ioffe Institute , Polytekhnicheskaya 26, 194021 St Petersburg , Russia

Abstract

ABSTRACT At the high temperatures inside recently formed neutron stars ($T\gtrsim 5\times 10^{8}\, \text{K}$), the particles in their cores are in the ‘strong-coupling’ regime, in which collisional forces make them behave as a single, stably stratified, and thus non-barotropic fluid. In this regime, axially symmetric hydromagnetic quasi-equilibrium states are possible, which are only constrained to have a vanishing azimuthal Lorentz force. In these states, the particle species deviate from chemical (β) equilibrium, which tends to be restored by β decays (Urca reactions), inducing fluid motions that change the magnetic field configuration. If the stars remained hot for a sufficiently long time, this evolution would eventually lead to a chemical equilibrium state, in which the fluid is barotropic and the magnetic field, if axially symmetric, satisfies the non-linear Grad–Shafranov equation. Here, we present a numerical scheme that decouples the magnetic and thermal evolution, enabling to efficiently perform, for the first time, long-term magnetothermal simulations in this regime for different magnetic field strengths and geometries. Our results demonstrate that, even for magnetar-strength fields $\gtrsim 10^{16} \, \mathrm{G}$, the feedback from the magnetic evolution on the thermal evolution is negligible. Thus, as the core passively cools, the Urca reactions quickly become inefficient at restoring chemical equilibrium, so the magnetic field evolves very little, and the Grad–Shafranov state is not attained. Therefore, any substantial evolution of the core magnetic field must occur later, in the ‘weak-coupling’ regime ($T\lesssim 5\times 10^8 \, \mathrm{K}$), when Urca reactions are frozen and ambipolar diffusion becomes relevant.

Funder

CEDENNA

CONICYT

ANID

Russian Science Foundation

Weizmann Institute of Science

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3