Seen and unseen: bursty star formation and its implications for observations of high-redshift galaxies with JWST

Author:

Sun Guochao1ORCID,Faucher-Giguère Claude-André1ORCID,Hayward Christopher C2ORCID,Shen Xuejian3ORCID

Affiliation:

1. CIERA and Department of Physics and Astronomy, Northwestern University , 1800 Sherman Avenue, Evanston, IL 60201 , USA

2. Center for Computational Astrophysics, Flatiron Institute , 162 Fifth Avenue, New York, NY 10010 , USA

3. TAPIR, California Institute of Technology , Pasadena, CA 91125 , USA

Abstract

ABSTRACT Both observations and simulations have shown strong evidence for highly time-variable star formation in low-mass and/or high-redshift galaxies, which has important observational implications because high-redshift galaxy samples are rest-ultraviolet (rest-UV) selected and therefore particularly sensitive to the recent star formation. Using a suite of cosmological ‘zoom-in’ simulations at z > 5 from the Feedback in Realistic Environments project, we examine the implications of bursty star formation histories for observations of high-redshift galaxies with JWST. We characterize how the galaxy observability depends on the star formation history. We also investigate selection effects due to bursty star formation on the physical properties measured, such as the gas fraction, specific star formation rate, and metallicity. We find the observability to be highly time-dependent for galaxies near the survey’s limiting flux due to the star formation rate variability: as the star formation rate fluctuates, the same galaxy oscillates in and out of the observable sample. The observable fraction $f_\mathrm{obs} = 50~{{\ \rm per\ cent}}$ at z ∼ 7 and M⋆ ∼ 108.5–$10^{9}\, {\rm M}_{\odot }$ for a JWST/NIRCam survey reaching a limiting magnitude of $m^\mathrm{lim}_\mathrm{AB} \sim 29{\!-\!}30$, representative of surveys such as JADES and CEERS. JWST-detectable galaxies near the survey limit tend to have properties characteristic of galaxies in the bursty phase: on average, they show approximately 2.5 times higher cold, dense gas fractions and 20 times higher specific star formation rates at a given stellar mass than galaxies below the rest-UV detection threshold. Our study represents a first step in quantifying selection effects and the associated biases due to bursty star formation in studying high-redshift galaxy properties.

Funder

NSF

NASA

STScI

Simons Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mini-quenching of z = 4–8 galaxies by bursty star formation;Monthly Notices of the Royal Astronomical Society;2023-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3