A cooling flow around the low-redshift quasar H1821+643

Author:

Russell H R1,Nulsen P E J23,Fabian A C4ORCID,Braben T E1,Brandt W N567,Clews L18,McDonald M910,Reynolds C S1112ORCID,Sanders J S13ORCID,Veilleux S1112

Affiliation:

1. School of Physics & Astronomy, University of Nottingham , University Park, Nottingham NG7 2RD , UK

2. Center for Astrophysics | Harvard & Smithsonian , 60 Garden Street, Cambridge, MA 02138 , USA

3. ICRAR, University of Western Australia , 35 Stirling Hwy, Crawley, WA 6009 , Australia

4. Institute of Astronomy , Madingley Road, Cambridge CB3 0HA , UK

5. Department of Astronomy & Astrophysics, 525 Davey Lab, The Pennsylvania State University , University Park, PA 16802 , USA

6. Institute for Gravitation and the Cosmos, The Pennsylvania State University , University Park, PA 16802 , USA

7. Department of Physics, 104 Davey Lab, The Pennsylvania State University , University Park, PA 16802 , USA

8. School of Physical Sciences, The Open University , Walton Hall, Milton Keynes MK7 6AA , UK

9. Department of Physics, Massachusetts Institute of Technology , Cambridge, MA 02139 , USA

10. Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, MA 02139 , USA

11. Department of Astronomy, University of Maryland , College Park, MD 20742-2421 , USA

12. Joint Space-Science Institute (JSI) , College Park, MD 20742-2421 , USA

13. Max-Planck-Institut für extraterrestrische Physik , Gießenbachstraße 1, D-85748, Garching , Germany

Abstract

ABSTRACT H1821+643 is the nearest quasar hosted by a galaxy cluster. The energy output by the quasar, in the form of intense radiation and radio jets, is captured by the surrounding hot atmosphere. Here, we present a new deep Chandra observation of H1821+643 and extract the hot gas properties into the region where Compton cooling by the quasar radiation is expected to dominate. Using detailed simulations to subtract the quasar light, we show that the soft-band surface brightness of the hot atmosphere increases rapidly by a factor of ∼30 within the central $\sim\!{10}\ \rm kpc$. The gas temperature drops precipitously to $\lt 0.4\rm \,\, keV$ and the density increases by over an order of magnitude. The remarkably low metallicity here is likely due to photoionization by the quasar emission. The variations in temperature and density are consistent with hydrostatic compression of the hot atmosphere. The extended soft-band peak cannot be explained by an undersubtraction of the quasar or scattered quasar light and is instead due to thermal interstellar medium. The radiative cooling time of the gas falls to only $12\pm 1\rm \,\, Myr$, below the free fall time, and we resolve the sonic radius. H1821+643 is therefore embedded in a cooling flow with a mass deposition rate of up to $3000\ {\rm M}_{\odot}\,{\rm yr}^{-1}$. Multiwavelength observations probing the star-formation rate and cold gas mass are consistent with a cooling flow. We show that the cooling flow extends to much larger radii than can be explained by Compton cooling. Instead, the active galactic nucleus appears to be underheating the core of this cluster.

Funder

STFC

University of Nottingham

NASA

ESA

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3