A global test of jet structure and delay time distribution of short-duration gamma-ray bursts

Author:

Luo Jia-Wei12ORCID,Li Ye3,Ai Shunke12ORCID,Gao He4,Zhang Bing12

Affiliation:

1. Nevada Center for Astrophysics, University of Nevada , Las Vegas, NV 89154, USA

2. Department of Physics and Astronomy, University of Nevada , Las Vegas, NV 89154, USA

3. Purple Mountain Observatory, Chinese Academy of Sciences , Nanjing 100012, China

4. Department of Astronomy, Beijing Normal University , Beijing 100875, China

Abstract

ABSTRACTThe multimessenger joint observations of GW170817 and GRB170817A shed new light on the study of short-duration gamma-ray bursts (SGRBs). Not only did it substantiate the assumption that SGRBs originate from binary neutron star (BNS) mergers, but it also confirms that the jet generated by this type of merger must be structured, hence the observed energy of an SGRB depends on the viewing angle from the observer. However, the precise structure of the jet is still subject to debate. Moreover, whether a single unified jet model can be applied to all SGRBs is not known. Another uncertainty is the delay time-scale of BNS mergers with respect to star-formation history of the Universe. In this paper, we conduct a global test of both delay and jet models of BNS mergers across a wide parameter space with simulated SGRBs. We compare the simulated peak flux, redshift, and luminosity distributions with the observed ones and test the goodness-of-fit for a set of models and parameter combinations. Our simulations suggest that GW170817/GRB 170817A and all SGRBs can be understood within the framework of a universal structured jet viewed at different viewing angles. Furthermore, model invoking a jet plus cocoon structure with a lognormal delay time-scale is most favoured. Some other combinations (e.g. a Gaussian delay with a power-law jet model) are also acceptable. However, the Gaussian delay with Gaussian jet model and the entire set of power-law delay models are disfavoured.

Funder

University of Nevada, Las Vegas

Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

China Manned Spaced

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3