Discovery of a split stellar stream in the periphery of the Small Magellanic Cloud

Author:

Nidever David L12ORCID

Affiliation:

1. Department of Physics, Montana State University , PO Box 173840, Bozeman, MT 59717-3840 , USA

2. Center for Computational Astrophysics, Flatiron Institute , 162 Fifth Avenue, New York, NY 10010 , USA

Abstract

ABSTRACT I report the discovery of a stellar stream (Sutlej) using Gaia DR3 (third data release) proper motions and XP metallicities located $\sim$15° north of the Small Magellanic Cloud (SMC). The stream is composed of two parallel linear components (‘branches’) approximately $\sim$8° × 0.6° in size and separated by 2.5°. The stars have a mean proper motion of ($\mu _{\rm RA},\mu _{\rm Dec.}$) = (+0.08 mas yr−1, −1.41 mas yr−1), which is quite similar to the proper motion of stars on the western side of the SMC. The colour–magnitude diagram of the stream stars has a clear red giant branch, horizontal branch, and main-sequence turn-off that are well matched by a parsec isochrone of 10 Gyr, [Fe/H] = −1.8 at 32 kpc, and a total stellar mass of $\sim$33 000 M$_{\odot }$. The stream is spread out over an area of 9.6 deg2 and has a surface brightness of 32.5 mag arcsec−2. The metallicity of the stream stars from Gaia XP spectra extends over $-2.5$$\le$ [M/H] $\le$$-1.0$ with a median of [M/H] = −1.8. The tangential velocity of the stream stars is 214 km s−1 compared to the values of 448 km s−1 for the Large Magellanic Cloud and 428 km s−1 for the SMC. While the radial velocity of the stream is not yet known, a comparison of the space velocities using a range of assumed radial velocities shows that the stream is unlikely to be associated with the Magellanic Clouds. The tangential velocity vector is misaligned with the stream by nearly 90°, which might indicate an important gravitational influence from the nearby Magellanic Clouds.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3