RRab variables with identical light-curve shapes at different pulsation periods

Author:

Jurcsik Johanna1,Juhász Áron12

Affiliation:

1. Konkoly Observatory , ELKH CSFK, Konkoly Thege Miklós út 15-17, H-1121 Budapest, Hungary

2. Eötvös Loránd University , Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary

Abstract

ABSTRACT In this paper, we report on the detection of RRab stars with quasi-identical-shape light curves but period differences as large as 0.05–0.21 d using the Galactic bulge data of the OGLE-IV survey. We have examined stars with shorter periods than the Oosterhoff I ridge of the bulge. These stars generally have smaller amplitudes and larger Fourier phase-differences than the typical bulge RRab stars have at the same period. Many of these ‘anomalous’ stars have good-quality light curves without any sign of the Blazhko modulation. Examining their Fourier parameters revealed that several of these stars show very similar light curve to the typical bulge RR Lyrae. We found hundreds of quasi-identical-shape light-curve pairs with different periods between the ‘anomalous’- and the ‘normal’-position RRab stars based on the OGLE I-band data. The OGLE V-band, and the archive VVV and MACHO surveys Ks-, b- and r-band data of these stars were also checked for light-curve-shape similarity. Finally, 149 pairs with identical-shape light curves in each available photometric band were identified. Calculating the physical properties of the variables using empirical formulae, on average, −0.5 dex, −0.13 mag, 0.67, and 165 K differences between the [Fe/H], MV, R/R⊙, and Teff values of the members of the pairs are derived, being the short-period stars less metal-poor, fainter, smaller, and hotter than the long-period variables. To explain the existence of variables with different physical properties and pulsation periods but with identical-shape light curves is a challenging task for modelling.

Funder

NKFIH

ESO

U.S. Department of Energy

University of California

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3