Atmospheric mass-loss due to giant impacts: the importance of the thermal component for hydrogen–helium envelopes

Author:

Biersteker John B1ORCID,Schlichting Hilke E12

Affiliation:

1. Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA

2. UCLA, 595 Charles E. Young Drive East, Los Angeles, CA 90095, USA

Abstract

ABSTRACT Systems of super-Earths and mini-Neptunes display striking variety in planetary bulk density and composition. Giant impacts are expected to play a role in the formation of many of these worlds. Previous works, focused on the mechanical shock caused by a giant impact, showed that these impacts can eject large fractions of the planetary envelope, offering a partial explanation for the observed compositional diversity. Here, we examine the thermal consequences of giant impacts, and show that the atmospheric loss caused by these effects can significantly exceed that caused by mechanical shocks for hydrogen–helium (H/He) envelopes. During a giant impact, part of the impact energy is converted into thermal energy, heating the rocky core and envelope. We find that the ensuing thermal expansion of the envelope can lead to a period of sustained, rapid mass-loss through a Parker wind, partly or completely eroding the H/He envelope. The degree of atmospheric loss depends on the planet’s orbital distance from its host star and its initial thermal state, and hence age. Close-in planets and younger planets are more susceptible to impact-triggered atmospheric loss. For planets where the heat capacity of the core is much greater than the envelope’s heat capacity (envelope mass fractions ≲4 per cent), the impactor mass required for significant atmospheric removal is Mimp/Mp ∼ μ/μc ∼ 0.1, approximately the ratio of the heat capacities of the envelope and core. Conversely, when the envelope dominates the planet’s heat capacity, complete loss occurs when the impactor mass is comparable to the envelope mass.

Funder

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3