Mantle mineralogy limits to rocky planet water inventories

Author:

Guimond Claire Marie1ORCID,Shorttle Oliver12,Rudge John F1ORCID

Affiliation:

1. Department of Earth Sciences, University of Cambridge , Downing Street, Cambridge CB2 3EQ, UK

2. Institute of Astronomy, University of Cambridge , Madingley Road, Cambridge CB3 0HA, UK

Abstract

ABSTRACT Nominally anhydrous minerals in rocky planet mantles can sequester multiple Earth-oceans’ worth of water. Mantle water storage capacities therefore provide an important constraint on planet water inventories. Here we predict silicate mantle water capacities from the thermodynamically-limited solubility of water in their constituent minerals. We report the variability of upper mantle and bulk mantle water capacities due to (i) host star refractory element abundances that set mantle mineralogy, (ii) realistic mantle temperature scenarios, and (iii) planet mass. We find that transition zone minerals almost unfailingly dominate the water capacity of the mantle for planets of up to ∼1.5 Earth masses, possibly creating a bottleneck to deep water transport, although the transition zone water capacity discontinuity is less pronounced at lower Mg/Si. The pressure of the ringwoodite-perovskite phase boundary defining the lower mantle is roughly constant, so the contribution of the upper mantle reservoir becomes less important for larger planets. If perovskite and postperovskite are relatively dry, then increasingly massive rocky planets would have increasingly smaller fractional interior water capacities. In practice, our results represent initial water concentration profiles in planetary mantles where their primordial magma oceans are water-saturated. This work is a step towards understanding planetary deep water cycling, thermal evolution as mediated by rheology and melting, and the frequency of ocean planets.

Funder

NSERC

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Framework for the Origin and Deep Cycles of Volatiles in Rocky Exoplanets;Reviews in Mineralogy and Geochemistry;2024-07-01

2. From Stars to Diverse Mantles, Melts, Crusts, and Atmospheres of Rocky Exoplanets;Reviews in Mineralogy and Geochemistry;2024-07-01

3. Exoplanet Mineralogy;Reviews in Mineralogy and Geochemistry;2024-07-01

4. Host Stars and How Their Compositions Influence Exoplanets;Reviews in Mineralogy and Geochemistry;2024-07-01

5. The role of magma oceans in maintaining surface water on rocky planets orbiting M-dwarfs;Monthly Notices of the Royal Astronomical Society;2023-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3