Piston Reconstruction Experiment (P-REx) – II. Off-line performance evaluation with VLTI/GRAVITY

Author:

Perera Saavidra12ORCID,Pott Jörg-Uwe1ORCID,Woillez Julien3ORCID,Kulas Martin1,Brandner Wolfgang1ORCID,Lacour Sylvestre4ORCID,Widmann Felix15ORCID

Affiliation:

1. Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany

2. University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA

3. European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748 Garching bei München, Germany

4. Observatoire de Paris, 61 Avenue de l’Observatoire, F-75014 Paris, France

5. Max Planck Institute for Extraterrestrial Physics, Gießenbachstraße 1, D-85748 Garching bei München, Germany

Abstract

ABSTRACT For sensitive optical interferometry, it is crucial to control the evolution of the optical path difference (OPD) of the wavefront between the individual telescopes of the array. The OPD between a pair of telescopes is induced by differential optical properties such as atmospheric refraction, telescope alignment, etc. This has classically been measured using a fringe tracker that provides corrections to a piston actuator to account for this difference. An auxiliary method, known as the Piston Reconstruction Experiment (P-REx), has been developed to measure the OPD, or differential ‘piston’ of the wavefront, induced by the atmosphere at each telescope. Previously, this method was outlined and results obtained from Large Binocular Telescope adaptive optics data for a single telescope aperture were presented. P-REx has now been applied off-line to previously acquired Very Large Telescope Intereferometer (VLTI)’s GRAVITY Coudé Infrared Adaptive Optics wavefront sensing data to estimate the atmospheric OPD for the six baselines. Comparisons with the OPD obtained from the VLTI GRAVITY fringe tracker were made. The results indicate that the telescope and instrumental noise of the combined VLTI and GRAVITY systems dominates over the atmospheric turbulence contributions. However, good agreement between simulated and on-sky P-REx data indicates that if the telescope and instrumental noise was reduced to atmospheric piston noise levels, P-REx has the potential to reduce the OPD root mean square of piston turbulence by up to a factor of 10 for frequencies down to 1 Hz. In such conditions, P-REx will assist in pushing the sensitivity limits of optical fringe tracking with long baseline interferometers.

Funder

Horizon 2020

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3