Sensitivity forecasts for the cosmological recombination radiation in the presence of foregrounds

Author:

Hart Luke1ORCID,Rotti Aditya1,Chluba Jens1ORCID

Affiliation:

1. Jodrell Bank Centre for Astrophysics, Alan Turing Building, University of Manchester, Manchester M13 9PL, UK

Abstract

ABSTRACT The cosmological recombination radiation (CRR) is one of the inevitable Lambda cold dark matter spectral distortions of the cosmic microwave background (CMB). While it shows a rich spectral structure across dm-mm wavelengths, it is also one of the smallest signals to target. Here, we carry out a detailed forecast for the expected sensitivity levels required to not only detect but also extract cosmological information from the CRR in the presence of foregrounds. We use CosmoSpec to compute the CRR including all important radiative transfer effects and modifications to the recombination dynamics. We confirm that detections of the overall CRR signal are possible with spectrometer concepts like SuperPIXIE. However, for a real exploitation of the cosmological information, an ≃ 50 times more sensitive spectrometer is required. While extremely futuristic, this could provide independent constraints on the primordial helium abundance, Yp, and probe the presence of extra relativistic degrees of freedom during BBN and recombination. Significantly improving the constraints on other cosmological parameters requires even higher sensitivity (another factor of ≃5) when considering a combination of a CMB spectrometer with existing CMB data. To a large part, this is due to astrophysical foregrounds which interestingly do not degrade the constraints on Yp and Neff as much. A future CMB spectrometer could thus open a novel way of probing non-standard BBN scenarios, dark radiation and sterile neutrinos. In addition, inflation physics could be indirectly probed using the CRR in combination with existing and forthcoming CMB anisotropy data.

Funder

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3