Arp 70: an interacting galaxy with extreme outflows

Author:

Camps-Fariña A123,Beckman J E124,Font J12,del Moral-Castro I12ORCID,Sanchez S F3,Borlaff A15

Affiliation:

1. Instituto de Astrofísica de Canarias, C/Vía Láctea s/n, E-38205 La Laguna, Tenerife, Spain

2. Department of Astrophysics, University of La Laguna, E-38205 La Laguna, Tenerife, Spain

3. Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 70-264, CP 04510 Ciudad de México, México

4. CSIC, E-2806 Madrid, Spain

5. NASA Ames Research Center, N245-6, Moffett Field, CA 94035, USA

Abstract

ABSTRACT We analysed a Fabry–Pérot (FP) cube of the interacting pair of galaxies Arp 70, which was obtained from the CeSAM public repository of FP data. On the larger galaxy Arp 70b, we detected the spectral signature of two different outflows, one located in the centre and the other associated with a giant H ii region in the arm region. The central outflow is especially prominent, with the flux of the secondary peaks in the emission-line profiles due to the outflowing gas being similar to that of the main peak. We used an archive fibre spectrum from SDSS to confirm this detection in H α as well as in the [N ii] line and, in addition, to perform diagnostics on the nature of the ionization. The emission at the centre is consistent with a low-ionization nuclear emission-line region and a weak active galactic nucleus. Using the spatial distribution of the profiles in the FP cube, we estimated the shape of the outflow which is consistent with two cones of expanding material, one approaching and the other receding from us, and used this to estimate the physical parameters of the outflow, finding energies of order 1057 erg and masses of order 108 M⊙. On the giant H ii region, we found a very large expanding superbubble with a diameter of ∼5 kpc. The bubble has an energy of order 1054 erg and a mass of about 4 × 107 M⊙. We discuss the possible origins for both of these features and whether they could be associated with the interaction between the galaxies.

Funder

MINECO

Seventh Framework Programme

Research Executive Agency

CONACYT

DGAPA, UNAM

Alfred P. Sloan Foundation

National Science Foundation

Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3