Relativistic, axisymmetric, viscous, radiation hydrodynamic simulations of geometrically thin discs. II. Disc variability

Author:

Mishra Bhupendra1,Kluźniak Wlodek2,Fragile P Chris3ORCID

Affiliation:

1. JILA, University of Colorado and National Institute of Standards and Technology, 440 UCB, Boulder, CO 80309-0440, USA

2. Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, Warsaw, PL-00-716, Poland

3. Department of Physics and Astronomy, College of Charleston, Charleston, SC 29424, USA

Abstract

ABSTRACT An analysis of two-dimensional viscous, radiation hydrodynamic numerical simulations of thin α-discs around a stellar mass black hole reveals multiple robust, coherent oscillations. Our disc models are initialized on both the gas- and radiation-pressure-dominated branches of the thermal equilibrium curve, with mass accretion rates between $\dot{M} = 0.01 L_\mathrm{Edd}/c^2$ and $10\, L_\mathrm{Edd}/c^2$. In the initially radiation-pressure-dominated disc, we confirm the presence of global inertial–acoustic oscillations of frequency slightly above the maximum radial epicyclic one. In the gas-pressure-dominated Schwarzschild-metric models, we find a velocity oscillation occurring at the maximum value of the radial epicyclic frequency, $3.5\times 10^{-3}\, t_\mathrm{g}^{-1}$, which is most likely a trapped fundamental g-mode. For the Kerr-metric, gas-pressure-dominated disc with dimensionless black hole spin parameter a* = 0.5, the mode frequency is well below the epicyclic frequency maximum, thus confirming that this oscillation is a trapped g-mode. Additionally, the total pressure fluctuations in the discs strongly suggest standing-wave p-modes with frequencies below the apparent g-mode frequency, some trapped in the inner disc close to the innermost stable circular orbit (ISCO), others present in the middle/outer parts of the disc. The strongest oscillations occur at the breathing oscillation frequency and are present in all the numerical models we report here, as are weaker velocity oscillations at the vertical epicyclic frequencies. The vertical oscillations show a 3:2 frequency ratio with oscillations occurring approximately at the radial epicyclic frequency, which could be of astrophysical importance in systems with observed twin peak, high-frequency quasi-periodic oscillations.

Funder

National Aeronautics and Space Administration

National Science Foundation

Narodowym Centrum Nauki

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3