Dust grain shattering in protoplanetary discs: collisional fragmentation or rotational disruption?

Author:

Michoulier Stéphane1ORCID,Gonzalez Jean-François1ORCID

Affiliation:

1. Univ Lyon, Univ Claude Bernard Lyon 1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574 , F-69230, Saint-Genis-Laval, France

Abstract

ABSTRACT In protoplanetary discs, the coagulation of dust grains into large aggregates still remains poorly understood. Grain porosity appears to be a promising solution to allow the grains to survive and form planetesimals. Furthermore, dust shattering has generally been considered to come only from collisional fragmentation; however, a new process was recently introduced, rotational disruption. We wrote a one-dimensional code that models the growth and porosity evolution of grains as they drift to study their final outcome when the two shattering processes are included. When simulating the evolution of grains in a disc model that reproduces observations, we find that rotational disruption is not negligible compared to the fragmentation and radial drift. Disruption becomes dominant when the turbulence parameter α ≲ 5 × 10−4, if the radial drift is slow enough. We show that the importance of disruption in the growth history of grains strongly depends on their tensile strength.

Funder

Agence Nationale de la Recherche

Labex

Horizon 2020

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3