Momentum deposition of supernovae with cosmic rays

Author:

Rodríguez Montero Francisco1ORCID,Martin-Alvarez Sergio2ORCID,Sijacki Debora2,Slyz Adrianne1,Devriendt Julien13,Dubois Yohan4

Affiliation:

1. Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH, UK

2. Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

3. CNRS, Centre de Recherche Astrophysique de Lyon, Université de Lyon, Université Lyon 1, ENS de Lyon, UMR 5574, F-69230 Saint-Genis-Laval, France

4. Institut d’Astrophysique de Paris, UMR 7095, CNRS, UPMC University of Paris VI, 98 bis boulevard Arago, F-75014 Paris, France

Abstract

ABSTRACT The cataclysmic explosions of massive stars as supernovae are one of the key ingredients of galaxy formation. However, their evolution is not well understood in the presence of magnetic fields or cosmic rays (CRs). We study the expansion of individual supernova remnants (SNRs) using our suite of 3D hydrodynamical (HD), magnetohydrodynamical (MHD) and CRMHD simulations generated using ramses. We explore multiple ambient densities, magnetic fields, and fractions of supernova energy deposited as CRs (χCR), accounting for CR anisotropic diffusion and streaming. All our runs have comparable evolutions until the end of the Sedov-Taylor phase. However, our CRMHD simulations experience an additional CR pressure-driven snowplough phase once the CR energy dominates inside the SNR. We present a model for the final momentum deposited by supernovae that captures this new phase: $p_{\rm SNR} = 2.87\times 10^{5} (\chi _{\text{CR}} + 1)^{4.82}\left(\frac{n}{\text{cm}^{-3}}\right)^{-0.196} M_{\odot }$ km s−1. Assuming a 10 per cent fraction of SN energy in CRs leads to a 50 per cent boost of the final momentum, with our model predicting even higher impacts at lower ambient densities. The anisotropic diffusion of CRs assuming an initially uniform magnetic field leads to extended gas and CR outflows escaping from the supernova poles. We also study a tangled initial configuration of the magnetic field, resulting instead in a quasi-isotropic diffusion of CRs and earlier momentum deposition. Finally, synthetic synchrotron observations of our simulations using the polaris code show that the local magnetic field configuration in the interstellar medium modifies the overall radio emission morphology and polarization.

Funder

ERC

Engineering and Physical Sciences Research Council

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3