Powering galactic superwinds with small-scale AGN winds

Author:

Costa Tiago1,Pakmor Rüdiger1ORCID,Springel Volker1

Affiliation:

1. Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85748 Garching b. München, Germany

Abstract

ABSTRACT We present a new implementation for active galactic nucleus (AGN) feedback through small-scale, ultrafast winds in the moving-mesh hydrodynamic code arepo. The wind is injected by prescribing mass, momentum, and energy fluxes across a spherical boundary centred on a supermassive black hole according to available constraints for accretion disc winds. After sweeping-up a mass equal to their own, small-scale winds thermalize, powering energy-driven outflows with dynamics, structure, and cooling properties in excellent agreement with those of analytic wind solutions. Momentum-driven solutions do not easily occur, because the Compton cooling radius is usually much smaller than the free-expansion radius of the small-scale winds. Through various convergence tests, we demonstrate that our implementation yields wind solutions, which are well converged down to the typical resolution achieved in cosmological simulations. We test our model in hydrodynamic simulations of isolated Milky Way – mass galaxies. Above a critical AGN luminosity, initially spherical, small-scale winds power bipolar, energy-driven superwinds that break out of the galactic nucleus, flowing at speeds $\gt 1000 \rm \, km \, s^{-1}$ out to $\sim 10 \, \rm kpc$. These energy-driven outflows result in moderate, but long-term, reduction in star formation, which becomes more pronounced for higher AGN luminosities and faster small-scale winds. Suppression of star formation proceeds through a rapid mode that involves the removal of the highest density, nuclear gas, and through a slower mode that effectively halts halo gas accretion. Our new implementation makes it possible to model AGN-driven winds in a physically meaningful and validated way in simulations of galaxy evolution, the interstellar medium and black hole accretion flows.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3