Determining the co-rotation radii of spiral galaxies using spiral arm pitch angle measurements at multiple wavelengths

Author:

Abdeen Shameer12ORCID,Kennefick Daniel12,Kennefick Julia12,Miller Ryan3,Shields Douglas W12,Monson Erik B12,Davis Benjamin L4ORCID

Affiliation:

1. Department of Physics, University of Arkansas, 226 Physics Building, 825 West Dickson Street, Fayetteville, AR 72701, USA

2. Arkansas Center for Space and Planetary Sciences, University of Arkansas, 346 1/2 North Arkansas Avenue, Fayetteville, AR 72701, USA

3. Department of Physics, Utica College, 1600 Burrstone Rd, Utica, NY 13502, USA

4. Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia

Abstract

ABSTRACT The spiral arms spanning disc galaxies are believed to be created by density waves that propagate through galactic discs. We present a novel method of finding the co-rotation radius where the spiral arm pattern speed matches the velocities of the stars within the disc. Our method uses an image-overlay technique, which involves tracing the arms of spiral galaxies on images observed in different wavelengths. Density wave theory predicts that spiral arms observed from different wavelengths show a phase crossing at the co-rotation radius. For the purpose of this study, 20 nearby galaxies were analysed in four different wavelengths with pitch angle measurements performed by two independent methods. We used optical wavelength images (B band 440 nm), two infrared wavelength images provided by Spitzer (3.6 and 8 μm) and ultraviolet images from GALEX (1350, 1750 Å). The results were compared and verified with other records found in the literature. We then found rotation curve data for six of our galaxies and used our co-rotation radii estimates to measure the time that would elapse between star formation and moving to their observed positions in the B-band spirals. The average time lapse for this motion was found to be ∼50 Myr. The success of this new method of finding the co-rotation radius confirms density wave theory in a very direct way.

Funder

Department of East Asian Languages and Cultures, Stanford University

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3