Affiliation:
1. Department of Physics, McWilliams Center for Cosmology, Carnegie Mellon University , Pittsburgh, PA 15213, USA
Abstract
ABSTRACTShear estimation bias from galaxy detection and blending identification is now recognized as an issue for ongoing and future weak-lensing surveys. Currently, the empirical approach to correcting for this bias involves numerically shearing every observed galaxy and rerunning the detection and selection process. In this work, we provide an analytical correction for this bias that is accurate to sub per cent level and far simpler to use. With the interpretation that smoothed image pixel values and galaxy properties are projections of the image signal onto a set of basis functions, we analytically derive the linear shear responses of both the pixel values and the galaxy properties (i.e. magnitude, size, and shape) using the shear responses of the basis functions. With these derived shear responses, we correct for biases from shear-dependent galaxy detection and galaxy sample selection. With the analytical covariance matrix of measurement errors caused by image noise on pixel values and galaxy properties, we correct for the noise biases in galaxy shape measurement and the detection/selection process to the second-order in noise. The code used for this paper can carry out the detection, selection, and shear measurement for ∼1000 galaxies per CPU second. The algorithm is tested with realistic image simulations, and we find, after the analytical correction (without relying on external image calibration) for the detection/selection bias of about $-4~{{\ \rm per\ cent}}$, the multiplicative shear bias is $-0.12 \pm 0.10~{{\ \rm per\ cent}}$ for isolated galaxies; and about $-0.3 \pm 0.1~{{\ \rm per\ cent}}$ for blended galaxies with Hyper Suprime-Cam observational condition.
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献