Analytical weak-lensing shear responses of galaxy properties and galaxy detection

Author:

Li Xiangchong1ORCID,Mandelbaum Rachel1ORCID

Affiliation:

1. Department of Physics, McWilliams Center for Cosmology, Carnegie Mellon University , Pittsburgh, PA 15213, USA

Abstract

ABSTRACTShear estimation bias from galaxy detection and blending identification is now recognized as an issue for ongoing and future weak-lensing surveys. Currently, the empirical approach to correcting for this bias involves numerically shearing every observed galaxy and rerunning the detection and selection process. In this work, we provide an analytical correction for this bias that is accurate to sub per cent level and far simpler to use. With the interpretation that smoothed image pixel values and galaxy properties are projections of the image signal onto a set of basis functions, we analytically derive the linear shear responses of both the pixel values and the galaxy properties (i.e. magnitude, size, and shape) using the shear responses of the basis functions. With these derived shear responses, we correct for biases from shear-dependent galaxy detection and galaxy sample selection. With the analytical covariance matrix of measurement errors caused by image noise on pixel values and galaxy properties, we correct for the noise biases in galaxy shape measurement and the detection/selection process to the second-order in noise. The code used for this paper can carry out the detection, selection, and shear measurement for ∼1000 galaxies per CPU second. The algorithm is tested with realistic image simulations, and we find, after the analytical correction (without relying on external image calibration) for the detection/selection bias of about $-4~{{\ \rm per\ cent}}$, the multiplicative shear bias is $-0.12 \pm 0.10~{{\ \rm per\ cent}}$ for isolated galaxies; and about $-0.3 \pm 0.1~{{\ \rm per\ cent}}$ for blended galaxies with Hyper Suprime-Cam observational condition.

Funder

Simons Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3