Constructing high-fidelity halo merger trees in abacussummit

Author:

Bose Sownak12ORCID,Eisenstein Daniel J1,Hadzhiyska Boryana1ORCID,Garrison Lehman H3ORCID,Yuan Sihan14ORCID

Affiliation:

1. Center for Astrophysics | Harvard & Smithsonian , 60 Garden St, Cambridge, MA 02138, USA

2. Institute for Computational Cosmology, Department of Physics, Durham University , Durham DH1 3LE, UK

3. Center for Computational Astrophysics, Flatiron Institute , 162 Fifth Avenue, New York, NY 10010, USA

4. Kavli Institute for Particle Astrophysics and Cosmology, Stanford University , Stanford, CA 94305, USA

Abstract

ABSTRACT Tracking the formation and evolution of dark matter haloes is a critical aspect of any analysis of cosmological N-body simulations. In particular, the mass assembly of a halo and its progenitors, encapsulated in the form of its merger tree, serves as a fundamental input for constructing semi-analytic models of galaxy formation and, more generally, for building mock catalogues that emulate galaxy surveys. We present an algorithm for constructing halo merger trees from abacussummit, the largest suite of cosmological N-body simulations performed to date consisting of nearly 60 trillion particles, and which has been designed to meet the Cosmological Simulation Requirements of the Dark Energy Spectroscopic Instrument (DESI) survey. Our method tracks the cores of haloes to determine associations between objects across multiple time slices, yielding lists of halo progenitors and descendants for the several tens of billions of haloes identified across the entire suite. We present an application of these merger trees as a means to enhance the fidelity of abacussummit halo catalogues by flagging and ‘merging’ haloes deemed to exhibit non-monotonic past merger histories. We show that this cleaning technique identifies portions of the halo population that have been deblended due to choices made by the halo finder, but which could have feasibly been part of larger aggregate systems. We demonstrate that by cleaning halo catalogues in this post-processing step, we remove potentially unphysical features in the default halo catalogues, leaving behind a more robust halo population that can be used to create highly accurate mock galaxy realizations from abacussummit.

Funder

NSF

NASA

UK Research and Innovation

Simons Foundation

NAM

DOE

Office of Science

Lawrence Berkeley National Laboratory

Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3