Particle-in-cell simulations – ion beam instabilities and the generation of Alfvén and whistler waves in low β plasma

Author:

Che H12,Benz A O34,Zank G P12

Affiliation:

1. Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville , Huntsville, AL 35805 , USA

2. Department of Space Science, University of Alabama in Huntsville , Huntsville, AL 35899 , USA

3. University of Applied Sciences and Arts Northwestern Switzerland , CH-5210 Windisch , Switzerland

4. Institute for Particle Physics and Astrophysics, ETH Zürich , CH-8093 Zürich , Switzerland

Abstract

ABSTRACT Ion beam-driven instabilities in a collisionless space plasma with low β, i.e. low plasma and magnetic pressure ratio, are investigated using particle-in-cell (PIC) simulations. Specifically, the effects of different ion drift velocities on the development of Buneman and resonant electromagnetic (EM) right-handed (RH) ion beam instabilities are studied. Our simulations reveal that both instabilities can be driven when the ion beam drift exceeds the theoretical thresholds. The Buneman instability, which is weakly triggered initially, dissipates only a small fraction of the kinetic energy of the ion beam while causing significant electron heating, owing to the small electron-ion mass ratio. However, we find that the ion beam-driven Buneman instability is quenched effectively by the resonant EM RH ion beam instability. Instead, the resonant EM RH ion beam instability dominates when the ion drift velocity is larger than the Alfvén speed, leading to the generation of RH Alfvén waves and RH whistler waves. We find that the intensity of Alfvén waves decreases with decrease of ion beam drift velocity, while the intensity of whistler waves increases. Our results provide new insights into the complex interplay between ion beams and plasma instabilities in low β collisionless space plasmas.

Funder

NSF

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3