Clumpy structures within the turbulent primordial cloud

Author:

Tang Ching-Yao12ORCID,Chen Ke-Jung1ORCID

Affiliation:

1. Institute of Astronomy and Astrophysics, Academia Sinica , Taipei 10617 , Taiwan

2. Department of Physics, National Taiwan University , Taipei 10617 , Taiwan

Abstract

ABSTRACT The primordial clouds in the mini-haloes hatch the first generation stars of the Universe, which play a crucial role in cosmic evolution. In this paper, we investigate how turbulence impacts the structure of primordial star-forming clouds. Previous cosmological simulations of the first star formation predicted a typical mass of around $\mathrm{ 100 \, M_\odot }$. This conflicts with recent observations of extremely metal-poor stars, suggesting a lower mass scale of about $\mathrm{25 \, M_\odot }$. The discrepancy may arise from unresolved turbulence in the star-forming cloud, driven by primordial gas accretion during mini-halo formation in the previous simulations. To quantitatively examine the turbulence effect on the primordial cloud formation, we employ the adaptive mesh refinement code Enzo to model the gas cloud with primordial composition, including artificially driven turbulence on the cloud scale and relevant gas physics. This artificially driven turbulence utilizes a stochastic forcing model to mimic the unresolved turbulence inside mini-haloes. Our results show that the turbulence with high Mach number and compressional mode effectively fragments the cloud into several clumps, each with dense cores of $\mathrm{22.7 - 174.9 \, M_\odot }$ that undergo Jeans instability to form stars. Fragmentation caused by intense and compressive turbulence prevents a runaway collapse of the cloud. The self-bound clumps with smaller masses in the turbulent primordial clouds suggest a possible pathway to decrease the theoretical mass scale of the first stars, further reconciling the mass discrepancy between simulations and observations.

Funder

National Science and Technology Council

Academia Sinica

National Energy Research Scientific Computing Center

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3