A deep learning approach to test the small-scale galaxy morphology and its relationship with star formation activity in hydrodynamical simulations

Author:

Zanisi Lorenzo12,Huertas-Company Marc34ORCID,Lanusse François5,Bottrell Connor6ORCID,Pillepich Annalisa7ORCID,Nelson Dylan89ORCID,Rodriguez-Gomez Vicente10ORCID,Shankar Francesco1ORCID,Hernquist Lars11,Dekel Avishai12,Margalef-Bentabol Berta13,Vogelsberger Mark14ORCID,Primack Joel15

Affiliation:

1. Department of Physics and Astronomy, University of Southampton, Highfield SO17 1BJ, UK

2. DISCnet centre for Doctoral Training, University of Southampton, Highfield SO17 1BJ, UK

3. Instituto de Astrofísica de Canarias (IAC); Departamento de Astrofísica, Universidad de La Laguna (ULL), E-38200 La Laguna, Spain

4. LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, F-75014 Paris, France

5. AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, F-91191 Gif-sur-Yvette, France

6. Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8P 1A1, Canada

7. Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany

8. Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany

9. Universität Heidelberg, Zentrum für Astronomie, Institut für theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg, Germany

10. Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 72-3, 58089 Morelia, Mexico

11. Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

12. Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

13. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA

14. Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

15. Physics Department, University of California, Santa Cruz, Santa Cruz, CA 95064, USA

Abstract

ABSTRACT Hydrodynamical simulations of galaxy formation and evolution attempt to fully model the physics that shapes galaxies. The agreement between the morphology of simulated and real galaxies, and the way the morphological types are distributed across galaxy scaling relations are important probes of our knowledge of galaxy formation physics. Here, we propose an unsupervised deep learning approach to perform a stringent test of the fine morphological structure of galaxies coming from the Illustris and IllustrisTNG (TNG100 and TNG50) simulations against observations from a subsample of the Sloan Digital Sky Survey. Our framework is based on PixelCNN, an autoregressive model for image generation with an explicit likelihood. We adopt a strategy that combines the output of two PixelCNN networks in a metric that isolates the small-scale morphological details of galaxies from the sky background. We are able to quantitatively identify the improvements of IllustrisTNG, particularly in the high-resolution TNG50 run, over the original Illustris. However, we find that the fine details of galaxy structure are still different between observed and simulated galaxies. This difference is mostly driven by small, more spheroidal, and quenched galaxies that are globally less accurate regardless of resolution and which have experienced little improvement between the three simulations explored. We speculate that this disagreement, that is less severe for quenched discy galaxies, may stem from a still too coarse numerical resolution, which struggles to properly capture the inner, dense regions of quenched spheroidal galaxies.

Funder

Science and Technology Facilities Council

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3