Exoplanet detection using machine learning

Author:

Malik Abhishek1,Moster Benjamin P1,Obermeier Christian1

Affiliation:

1. Universitäts-Sternwarte, Ludwig-Maximilians-Universität München, Scheinerstr. 1, 81679 München, Germany

Abstract

Abstract We introduce a new machine learning based technique to detect exoplanets using the transit method. Machine learning and deep learning techniques have proven to be broadly applicable in various scientific research areas. We aim to exploit some of these methods to improve the conventional algorithm based approaches presently used in astrophysics to detect exoplanets. Using the time-series analysis library TSFresh to analyse light curves, we extracted 789 features from each curve, which capture the information about the characteristics of a light curve. We then used these features to train a gradient boosting classifier using the machine learning tool lightgbm. This approach was tested on K2 campaign 7 data with injected artificial transit signals, which showed that it is competitive compared to the conventional box least squares fitting (BLS) method. We further found that our method produced comparable results to existing state-of-the-art deep learning models, while being much more computationally efficient and without needing folded and secondary views of the light curves. For Kepler data, the method is able to predict a planet with an AUC of 0.948, so that 94.8 per cent of the true planet signals are ranked higher than non-planet signals. The resulting recall is 0.96, so that 96 per cent of real planets are classified as planets. For the Transiting Exoplanet Survey Satellite (TESS) data, we found our method can classify light curves with an accuracy of 0.98, and is able to identify planets with a recall of 0.82 at a precision of 0.63.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exoplanet Detection Using Machine Learning : A Comparative Study Using Kepler Mission Data;International Journal of Scientific Research in Science and Technology;2024-09-07

2. Transit Photometry for Estimating the Velocity of Exoplanets and specific Defence Applications;2024 IEEE Space, Aerospace and Defence Conference (SPACE);2024-07-22

3. Fast, Simple, and Accurate Time Series Analysis with Large Language Models: An Example of Mean-motion Resonances Identification;The Astrophysical Journal;2024-05-01

4. ExoSpikeNet: A Light Curve Analysis Based Spiking Neural Network for Exoplanet Detection;2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT);2024-04-06

5. Identifying galaxy cluster mergers with deep neural networks using idealized Compton-y and X-ray maps;Monthly Notices of the Royal Astronomical Society;2024-02-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3