The perturbed FLRW metric on all scales: Newtonian limit and top-hat collapse

Author:

Finke Andreas1ORCID

Affiliation:

1. Département de Physique Théorique and Center for Astroparticle Physics, Université de Genéve, 24 quai Ansermet, 1211 Genéve 4, CH

Abstract

Abstract The applicability of a linearized perturbed FLRW metric to the late, lumpy universe has been subject to debate. We consider in an elementary way the Newtonian limit of the Einstein equations with this ansatz for the case of structure formation in late-time cosmology, on small and on large scales, and argue that linearizing the Einstein tensor produces only a small error down to arbitrarily small, decoupled scales (e.g. solar system scales). On subhorizon patches, the metric scale factor becomes a coordinate choice equivalent to choosing the spatial curvature, and not a sign that the FLRW metric cannot perturbatively accommodate very different local physical expansion rates of matter; we distinguish these concepts, and show that they merge on large scales for the Newtonian limit to be globally valid. Furthermore, on subhorizon scales, a perturbed FLRW metric ansatz does not already imply assumptions on isotropy, and effects beyond a FLRW background, including those potentially caused by nonlinearities of GR, may be encoded into nontrivial boundary conditions. The corresponding cosmologies have already been developed in a Newtonian setting by Heckmann and Schücking and none of these boundary conditions can explain the accelerated expansion of the universe. Our analysis of the field equations is confirmed on the level of solutions by an example of pedagogical value, comparing a collapsing top-hat overdensity (embedded into a cosmological background) treated in such perturbative manner to the corresponding exact solution of GR, where we find good agreement even in the regimes of strong density contrast

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cosmological principle in Newtonian dynamics;Modern Physics Letters A;2020-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3