Constraining the rotation profile in a low-luminosity subgiant with a surface rotation measurement

Author:

Wilson Tanner A12ORCID,Casey Andrew R12ORCID,Mandel Ilya13ORCID,Ball Warrick H4ORCID,Bellinger Earl P56ORCID,Davies Guy46

Affiliation:

1. School of Physics & Astronomy, Monash University , Victoria, 3800, Australia

2. Center of Excellence for Astrophysics in Three Dimensions (ASTRO-3D) , Australia

3. The ARC Center of Excellence for Gravitational Wave Discovery – OzGrav , Australia

4. School of Physics and Astronomy, University of Birmingham , Edgbaston, B15 2TT, UK

5. Max Planck Institute for Astrophysics , Garching, 85748, Germany

6. Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University , Aarhus C, DK-8000, Denmark

Abstract

ABSTRACT Rotationally induced mode splitting frequencies of low-luminosity subgiants suggest that angular momentum transport mechanisms are 1–2 orders of magnitude more efficient in these stars than predicted by theory. Constraints on the rotation profile of low-luminosity subgiants could be used to identify the dominant mechanism for angular momentum transport. We develop a forward model for the rotation profile given observed rotational splittings, assuming a step-like rotation profile. We identify a consistent degeneracy between the position of the profile discontinuity and the surface rotation rate. We perform mock experiments that show the discontinuity position can be better constrained with a prior on the surface rotation rate, which is informed by star spot modulations. We finally apply this approach to KIC 12508433, a well-studied low-luminosity subgiant, as an example case. With the observed surface rotation prior, we obtain a factor of 2 increase in precision of the position of strong rotation gradient. We recover the literature values of the core and surface rotation rates and find the highest support for a discontinuity in the radiative zone. Auxiliary measurements of surface rotation could substantially improve inferences on the rotation profile of low-luminosity subgiants with already available data.

Funder

Science and Technology Facilities Council

European Research Council

Danish National Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3