Mode changing in J1909 − 3744: the most precisely timed pulsar

Author:

Miles M T12ORCID,Shannon R M12ORCID,Bailes M12,Reardon D J12ORCID,Buchner S3ORCID,Middleton H124ORCID,Spiewak R125ORCID

Affiliation:

1. Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia

2. ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav), Mail H29, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia

3. South African Radio Astronomy Observatory, 2 Fir Street, Black River Park, Observatory 7925, South Africa

4. School of Physics, University of Melbourne, Parkville, VIC 3010, Australia

5. Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK

Abstract

ABSTRACT We present baseband radio observations of the millisecond pulsar J1909 − 3744, the most precisely timed pulsar, using the MeerKAT telescope as part of the MeerTime pulsar timing array campaign. During a particularly bright scintillation event the pulsar showed strong evidence of pulse mode changing, among the first millisecond pulsars and the shortest duty cycle millisecond pulsar to do so. Two modes appear to be present, with the weak (lower signal-to-noise ratio) mode arriving 9.26 ± 3.94 μs earlier than the strong counterpart. Further, we present a new value of the jitter noise for this pulsar of 8.20 ± 0.14 ns in one hour, finding it to be consistent with previous measurements taken with the MeerKAT (9 ± 3 ns) and Parkes (8.6 ± 0.8 ns) telescopes, but inconsistent with the previously most precise measurement taken with the Green Bank telescope (14 ± 0.5 ns). Timing analysis on the individual modes is carried out for this pulsar, and we find an approximate $10\, \mathrm{per\,cent}$ improvement in the timing precision is achievable through timing the strong mode only as opposed to the full sample of pulses. By forming a model of the average pulse from templates of the two modes, we time them simultaneously and demonstrate that this timing improvement can also be achieved in regular timing observations. We discuss the impact an improvement of this degree on this pulsar would have on searches for the stochastic gravitational wave background, as well as the impact of a similar improvement on all MeerTime PTA pulsars.

Funder

Swinburne University of Technology

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3