Meteor cluster event indication in variable-length astronomical video sequences

Author:

Bednář Jan1,Krauz Lukáš1ORCID,Páta Petr1,Koten Pavel2

Affiliation:

1. Department of Radioelectronics, Faculty of Electrical Engineering, Czech Technical University in Prague , Technická 2, CZ-166 27 Prague 6, Czech Republic

2. Astronomical Institute of the Academy of Sciences of the Czech Republic , Fričova 298, CZ-251 65 Ondřejov, Czech Republic

Abstract

ABSTRACT In recent years, the study of parallel or cluster meteor events has become increasingly popular. Many imaging systems currently focus on meteor detection, but the algorithms exploiting the data from such systems do not investigate the probability of cluster or parallel meteor events. This paper presents a novel approach to indicate a potential meteor cluster or parallel meteor event based on variable-length astronomical video sequences. The presented algorithm consists of two main parts: meteor event pre-detection and meteor cluster event probability evaluation. The first part of the algorithm involves a meteor pre-detection method based on the Hough transform and the exact event location within the time domain. In addition to pre-detecting meteor events, the method outputs event trajectory parameters that are further exploited in a second part of the algorithm. This subsequent part of the algorithm then operates over these meteor trajectory parameters and indicates the probability of cluster occurrence. The algorithm is experimentally evaluated on video sequences generated by the Meteor Automatic Imager and Analyzer (MAIA) astronomical imaging system, covering the Draconid and September ϵ Perseid meteor showers. Compared to the current MAIA meteor detection software, the proposed part of the pre-detection algorithm shows promising results, especially the increased rate of correct meteor detection. The meteor cluster evaluation part of the algorithm then demonstrates its ability to successfully select related meteor event candidates (disintegrated from the same parental object) and reject unrelated ones.

Funder

Grant Agency of the Czech Republic

Czech Technical University in Prague

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3