Affiliation:
1. ICRAR – Curtin University. GPO Box U1987, Perth, 6845. Australia
Abstract
ABSTRACT
Radio interferometer arrays with non-homogeneous element patterns are more difficult to calibrate compared to the more common homogeneous array. In particular, the non-homogeneity of the patterns has significant implications on the computational tractability of evaluating the calibration solutions. We apply the A-stacking technique to this problem and explore the trade-off to be made between the calibration accuracy and computational complexity. Through simulations, we show that this technique can be favourably applied in the context of an SKA-Low station. We show that the minimum accuracy requirements can be met at a significantly reduced computational cost, and this cost can be reduced even further if the station calibration time-scale is relaxed from 10 min to several hours. We demonstrate the impact antenna designs with differing levels of non-homogeneity have on the overall computational complexity in addition to some cases where calibration performs poorly.
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献