Affiliation:
1. Department of Physics, Indian Institute of Science, Bangalore 560012, India
2. International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560089, India
Abstract
ABSTRACT
Outward transport of angular momentum, as well as viscous and thermal stability, are the necessary criteria for the formation of an accretion disc and to radiate steadily. Turbulent motions originating from magneto-rotational instability or hydrodynamic instability can do the required transport. We explore the effect of a large-scale magnetic field (LSMF) over the turbulent transport in an optically thin advective accretion disc. In this work, turbulent transport is represented through the usual Shakura–Sunyaev α-viscosity. The evolution of the magnetic field and other variables is found by solving vertically integrated height-averaged magnetohydrodynamic equations. Depending on its configuration, the LSMF can support or oppose α in outward transport of angular momentum. Once outward transport of angular momentum is assured, i.e. formation of the disc is confirmed through the combined effect of α-viscosity and the LSMF, we explore the impact of the LSMF in thermally stabilizing the disc. As found earlier, we also find that the advection of heat energy becomes zero or negative with an increasing accretion rate. That is why, at or above a critical accretion rate, the optically thin advective disc becomes thermally unstable. We show, however, that with the addition of a strong enough magnetic field, the disc regains its thermal stability and Joule heating turns out to play the key role in that. Throughout our analysis, the plasma-β (βm) remains within the range of 5–103, which does not impose any restriction in the simultaneous operation of the LSMF and the turbulent transport.
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献