A joint SZ–X-ray–optical analysis of the dynamical state of 288 massive galaxy clusters

Author:

Zenteno A1ORCID,Hernández-Lang D123,Klein M24,Vergara Cervantes C5,Hollowood D L6,Bhargava S5,Palmese A78,Strazzullo V29,Romer A K5,Mohr J J24,Jeltema T6,Saro A91011,Lidman C12ORCID,Gruen D131415ORCID,Ojeda V16,Katzenberger A17,Aguena M1819,Allam S7,Avila S20,Bayliss M21,Bertin E2223,Brooks D24,Buckley-Geer E7,Burke D L1415,Capasso R25,Carnero Rosell A26,Carrasco Kind M2728,Carretero J29,Castander F J3031,Costanzi M1132,da Costa L N1933,De Vicente J26,Desai S34,Diehl H T7,Doel P24,Eifler T F3536,Evrard A E3738,Flaugher B7,Floyd B39,Fosalba P3031,Frieman J78,García-Bellido J20,Gerdes D W3738,Gonzalez J R40,Gruendl R A2728,Gschwend J1933,Gutierrez G7,Hartley W G244142,Hinton S R43,Honscheid K4445,James D J46,Kuehn K4748,Lahav O24,Lima M1819,McDonald M49,Maia M A G1933,March M50,Melchior P51,Menanteau F2728,Miquel R2952,Ogando R L C1933,Paz-Chinchón F2853,Plazas A A51,Roodman A1415,Rykoff E S1415,Sanchez E26,Scarpine V7,Schubnell M38,Serrano S3031,Sevilla-Noarbe I26,Smith M54,Soares-Santos M55,Suchyta E56,Swanson M E C28,Tarle G38,Thomas D57,Varga T N24,Walker A R1,Wilkinson R D5,

Affiliation:

1. Cerro Tololo Inter-American Observatory, NSF’s National Optical-Infrared Astronomy Research Laboratory, Casilla 603, La Serena, Chile

2. Faculty of Physics, Ludwig-Maximilians-Universität, Scheinerstr 1, D-81679 Munich, Germany

3. Gemini Observatory, NSF’s National Optical-Infrared Astronomy Research Laboratory, Casilla 603, La Serena, Chile

4. Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching, Germany

5. Department of Physics and Astronomy, University of Sussex, Pevensey Building, Brighton BN1 9QH, UK

6. Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA

7. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA

8. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA

9. Astronomy Unit, Department of Physics, University of Trieste, via Tiepolo 11, I-34131 Trieste, Italy

10. IFPU – Institute for Fundamental Physics of the Universe, Via Beirut 2, I-34014 Trieste, Italy

11. INAF – Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34143 Trieste, Italy

12. The Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2601, Australia

13. Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA

14. Kavli Institute for Particle Astrophysics & Cosmology, Stanford University, PO Box 2450, Stanford, CA 94305, USA

15. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

16. Departamento de Fisica y Astronomia, Universidad de La Serena, Avenida Juan Cisternas 1200, La Serena, 1720236, Chile

17. Department of Geography, Ludwig-Maximilians-Universität, Luisenstr 37, D-80333 Munich, Germany

18. Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP 05314-970, Brazil

19. Laboratório Interinstitucional de e-Astronomia – LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil

20. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain

21. Department of Physics, University of Cincinnati, Cincinnati, OH 45221, USA

22. CNRS, Institut d’Astrophysique de Paris, UMR 7095, F-75014 Paris, France

23. Institut d’Astrophysique de Paris, Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, F-75014 Paris, France

24. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK

25. Oskar Klein Centre, Department of Physics, Stockholm University, AlbaNova University Centre, SE 106 91 Stockholm, Sweden

26. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 40 - 28040 Madrid, Spain

27. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA

28. National Center for Supercomputing Applications, 1205 West Clark St, Urbana, IL 61801, USA

29. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain

30. Institut d’Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain

31. Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain

32. Institute for Fundamental Physics of the Universe, Via Beirut 2, I-34014 Trieste, Italy

33. Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil

34. Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India

35. Department of Astronomy/Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA

36. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA

37. Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA

38. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA

39. Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110, USA

40. Department of Astronomy, University of Michigan, 1085 S. University, Ann Arbor, MI 48109, USA

41. Département de Physique Théorique and Center for Astroparticle Physics, Université de Genève, 24 quai Ernest Ansermet, CH-1211 Geneva, Switzerland

42. Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland

43. School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia

44. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA

45. Department of Physics, The Ohio State University, Columbus, OH 43210, USA

46. Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA

47. Australian Astronomical Optics, Macquarie University, North Ryde, NSW 2113, Australia

48. Lowell Observatory, 1400 Mars Hill Rd, Flagstaff, AZ 86001, USA

49. Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

50. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA

51. Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA

52. Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain

53. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

54. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK

55. Physics Department, Brandeis University, 415 South Street, Waltham, MA 02453, USA

56. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

57. Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK

Abstract

ABSTRACT We use imaging from the first three years of the Dark Energy Survey to characterize the dynamical state of 288 galaxy clusters at 0.1 ≲ z ≲ 0.9 detected in the South Pole Telescope (SPT) Sunyaev–Zeldovich (SZ) effect survey (SPT-SZ). We examine spatial offsets between the position of the brightest cluster galaxy (BCG) and the centre of the gas distribution as traced by the SPT-SZ centroid and by the X-ray centroid/peak position from Chandra and XMM data. We show that the radial distribution of offsets provides no evidence that SPT SZ-selected cluster samples include a higher fraction of mergers than X-ray-selected cluster samples. We use the offsets to classify the dynamical state of the clusters, selecting the 43 most disturbed clusters, with half of those at z ≳ 0.5, a region seldom explored previously. We find that Schechter function fits to the galaxy population in disturbed clusters and relaxed clusters differ at z > 0.55 but not at lower redshifts. Disturbed clusters at z > 0.55 have steeper faint-end slopes and brighter characteristic magnitudes. Within the same redshift range, we find that the BCGs in relaxed clusters tend to be brighter than the BCGs in disturbed samples, while in agreement in the lower redshift bin. Possible explanations includes a higher merger rate, and a more efficient dynamical friction at high redshift. The red-sequence population is less affected by the cluster dynamical state than the general galaxy population.

Funder

U.S. Department of Energy

European Research Council

Food Allergy Research and Education

Ministero dell’Istruzione, dell’Università e della Ricerca

National Science Foundation

Ministerio de Economía y Competitividad

Seventh Framework Programme

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Halo growth and merger rates as a cosmological test;Monthly Notices of the Royal Astronomical Society;2023-11-06

2. Joint measurement of the galaxy cluster pressure profile with Planck and SPT-SZ;Astronomy & Astrophysics;2023-10

3. The effect of cluster dynamical state on ram-pressure stripping;Monthly Notices of the Royal Astronomical Society;2023-10-01

4. Clash of Titans: the impact of cluster mergers in the galaxy cluster red sequence;Monthly Notices of the Royal Astronomical Society;2023-07-26

5. Modelling galaxy cluster triaxiality in stacked cluster weak lensing analyses;Monthly Notices of the Royal Astronomical Society;2023-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3