Recovering the gravitational potential in a rotating frame: Deep Potential applied to a simulated barred galaxy

Author:

Kalda Taavet1ORCID,Green Gregory M1ORCID,Ghosh Soumavo1ORCID

Affiliation:

1. Max-Planck-Institut für Astronomie , Königstuhl 17, D-69117 Heidelberg , Germany

Abstract

ABSTRACT Stellar kinematics provides a window into the gravitational field, and therefore into the distribution of all mass, including dark matter. Deep Potential is a method for determining the gravitational potential from a snapshot of stellar positions in phase space, using mathematical tools borrowed from deep learning to model the distribution function and solve the Collisionless Boltzmann equation. In this work, we extend the Deep Potential method to rotating systems, and then demonstrate that it can accurately recover the gravitational potential, density distribution, and pattern speed of a simulated barred disc galaxy, using only a frozen snapshot of the stellar velocities. We demonstrate that we are able to recover the bar pattern speed to within $15 \,\rm {per\, cent}$ in our simulated galaxy using stars in a 4 kpc subvolume centred on a Solar-like position, and to within $20 \,\rm{per\,cent}$ in a 2 kpc subvolume. In addition, by subtracting the mock ‘observed’ stellar density from the recovered total density, we are able to infer the radial profile of the dark matter density in our simulated galaxy. This extension of Deep Potential is an important step in allowing its application to the Milky Way, which has rotating features, such as a central bar and spiral arms, and may moreover provide a new method of determining the pattern speed of the Milky Way bar.

Funder

Alexander von Humboldt Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3