ATOMS: ALMA Three-millimeter Observations of Massive Star-forming regions – IX. A pilot study towards IRDC G034.43+00.24 on multi-scale structures and gas kinematics

Author:

Liu Hong-Li1ORCID,Tej Anandmayee2ORCID,Liu Tie34,Goldsmith Paul F5,Stutz Amelia67,Juvela Mika8,Qin Sheng-Li1,Xu Feng-Wei910,Bronfman Leonardo11,Evans Neal J1213,Saha Anindya2,Issac Namitha14,Tatematsu Ken’ichi15ORCID,Wang Ke910,Li Shanghuo13,Zhang Siju9,Baug Tapas16,Dewangan Lokesh17ORCID,Wu Yue-Fang910,Zhang Yong18ORCID,Lee Chang Won1319,Liu Xun-Chuan34,Zhou Jianwen20,Soam Archana21ORCID

Affiliation:

1. Department of Astronomy, Yunnan University , Kunming, 650091, People’s Republic of China

2. Indian Institute of Space Science and Technology , Thiruvananthapuram 695 547, Kerala, India

3. Shanghai Astronomical Observatory, Chinese Academy of Sciences , 80 Nandan Road, Shanghai 200030, People’s Republic of China

4. Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences , 80 Nandan Road, Shanghai 200030, People’s Republic of China

5. Jet Propulsion Laboratory, California Institute of Technology , 4800 Oak Grove Drive, Pasadena, CA 91109, USA

6. Departamento de Astronomía , Universidad de Concepción, Av. Esteban Iturra s/n, Distrito Universitario, 160-C, Chile

7. Max-Planck-Institute for Astronomy , Königstuhl 17, D-69117 Heidelberg, Germany

8. Department of Physics , PO box 64, FI-00014, University of Helsinki, Finland

9. Kavli Institute for Astronomy and Astrophysics, Peking University , 5 Yiheyuan Road, Haidian District, Beijing 100871, People’s Republic of China

10. Department of Astronomy, Peking University , 100871, Beijing, People’s Republic of China

11. Departamento de Astronomía, Universidad de Chile , Las Condes, Santiago, Chile

12. Department of Astronomy, The University of Texas at Austin , 2515 Speedway, Stop C1400, Austin, TX 78712-1205, USA

13. Korea Astronomy and Space Science Institute , 776 Daedeokdaero, Yuseong-gu, Daejeon 34055, Republic of Korea

14. Indian Institute of Astrophysics , Koramangala II Block, Bangalore 560 034, India

15. National Astronomical Observatory of Japan , National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

16. Satyendra Nath Bose National Centre for Basic Sciences , Block-JD, Sector-III, Salt Lake, Kolkata-700 106, India

17. Physical Research Laboratory , Navrangpura, Ahmedabad-380 009, India

18. School of Physics and Astronomy, Sun Yat-sen University , 2 Daxue Road, Zhuhai, Guangdong, 519082, People’s Republic of China

19. University of Science and Technology , Korea (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea

20. National Astronomical Observatories, Chinese Academy of Sciences , Beijing 100101, China

21. SOFIA Science Centre , USRA, NASA Ames Research Centre, MS-12, N232, Moffett Field, CA 94035, USA

Abstract

ABSTRACT We present a comprehensive study of the gas kinematics associated with density structures at different spatial scales in the filamentary infrared dark cloud, G034.43+00.24 (G34). This study makes use of the H13CO+ (1–0) molecular line data from the ALMA Three-millimeter Observations of Massive Star-forming regions (ATOMS) survey, which has spatial and velocity resolution of ∼0.04 pc and 0.2 km s−1, respectively. Several tens of dendrogram structures have been extracted in the position-position-velocity space of H13CO+, which include 21 small-scale leaves and 20 larger-scale branches. Overall, their gas motions are supersonic but they exhibit the interesting behaviour where leaves tend to be less dynamically supersonic than the branches. For the larger scale, branch structures, the observed velocity–size relation (i.e. velocity variation/dispersion versus size) are seen to follow the Larson scaling exponent while the smaller-scale, leaf structures show a systematic deviation and display a steeper slope. We argue that the origin of the observed kinematics of the branch structures is likely to be a combination of turbulence and gravity-driven ordered gas flows. In comparison, gravity-driven chaotic gas motion is likely at the level of small-scale leaf structures. The results presented in our previous paper and this current follow-up study suggest that the main driving mechanism for mass accretion/inflow observed in G34 varies at different spatial scales. We therefore conclude that a scale-dependent combined effect of turbulence and gravity is essential to explain the star-formation processes in G34.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Jet Propulsion Laboratory

California Institute of Technology

National Aeronautics and Space Administration

National Research Foundation of Korea

Ministry of Education, Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3