Variation of the sticking of methanol on low-temperature surfaces as a possible obstacle to freeze out in dark clouds

Author:

Gadallah K A K12ORCID,Sow A1,Congiu E1ORCID,Baouche S1,Dulieu F1

Affiliation:

1. CY Cergy Paris Université, Sorbonne Université, Observatoire de Paris, PSL University, CNRS, LERMA, F-95000 Cergy, France

2. Astronomy and Meteorology Department, Faculty of Science, AL-Azhar University, Nasr city, 11884 Cairo, Egypt

Abstract

ABSTRACT Sticking of gas-phase methanol on different cold surfaces – gold, 13CO, and amorphous solid water (ASW) ice – was studied as a function of surface temperature (7–40 K). In an ultrahigh-vacuum system, reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption methods were simultaneously used to measure methanol sticking efficiency. Methanol band strengths obtained by RAIRS vary greatly depending on the type of the surface. Nevertheless, both methods indicate that the sticking of methanol on different surfaces varies with surface temperature. The sticking efficiency decreases by 30${{\ \rm per\ cent}}$ as the surface temperature goes from 7 to 16 K, then gradually increases until the temperature is 40 K, reaching approximately the initial value found at 7 K. The sticking of methanol differs slightly from one surface to another. At low temperature, it has the lowest values on gold, intermediate values on water ice, and the highest values are found on CO ice, although these differences are smaller than those observed with temperature variation. There exists probably a turning point during the structural organization of methanol ice at 16 K, which makes the capture of methanol from the gas phase less efficient. We wonder if this observation could explain the surprising high abundance of gaseous methanol observed in dense interstellar cores, where it should accrete on grains. In this regard, a 30${{\ \rm per\ cent}}$ reduction of the sticking is not sufficient in itself but transposed to astrophysical conditions dominated by cold gas (∼15 K), which could reduce the sticking efficiency by two orders of magnitude.

Funder

Science and Technology Development Fund

Institut National des Sciences de l’Univers, Centre National de la Recherche Scientifique

Commissariat à l'Énergie Atomique et aux Énergies Alternatives

Centre National d’Etudes Spatiales

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3